Оптическое распознавание текста

Понимание изображения документа, порядок анализа проекционных профилей и преобразование Хафа. Процесс оптического распознавания символов и применение нейронных сетей. Классификация перцептронов, обучение и ограничение. Процесс работы сети Хопфилда.

Подобные документы

  • Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.

    реферат, добавлен 17.05.2013

  • Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.

    статья, добавлен 23.01.2014

  • Теория распознавания образов. Цифровая обработка изображений и распознавания образов. Система визуального наблюдения. Применение алгоритма Виолы-Джонса. Методы определения и оценка оптического потока. Применение трекинга при помощи оптического потока.

    курсовая работа, добавлен 11.11.2017

  • Основные классы задач в распознавании человека по изображению лица. Поиск изображения в больших базах данных, задача контроля доступа. Нейросетевые методы распознавания человека по изображению лица. Архитектура нейронных сетей, разработка алгоритма.

    курсовая работа, добавлен 06.06.2013

  • Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.

    лекция, добавлен 26.09.2017

  • Анализ методов и моделей интеллектуального анализа данных. Модификация методов и алгоритмов распознавания текста и лица. Значение программного обеспечения для решения задачи распознавания текстов и лиц. Режим работы программного обеспечение "DPro".

    диссертация, добавлен 24.05.2018

  • Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.

    статья, добавлен 26.04.2017

  • Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.

    курсовая работа, добавлен 26.06.2011

  • Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.

    реферат, добавлен 26.04.2016

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.

    статья, добавлен 26.04.2019

  • Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.

    курс лекций, добавлен 17.01.2011

  • Процесс масштабирования (увеличения) изображения с минимальной потерей в качестве. Анализ способа соединения классического метода масштабирования и метода машинного обучения. Алгоритм работы нейронной сети, разработанной для масштабирования изображений.

    дипломная работа, добавлен 01.08.2017

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Преимущества применения нейронных сетей для распознавания объектов. Разработка алгоритма обработки образа с помощью нечеткой логики в системе технического зрения. Бинаризация и кодирование изображения при его преобразовании из цветного в оттенки серого.

    курсовая работа, добавлен 29.03.2021

  • Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.

    методичка, добавлен 26.11.2015

  • Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.

    реферат, добавлен 15.03.2009

  • Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.

    дипломная работа, добавлен 30.07.2016

  • Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.

    статья, добавлен 29.05.2017

  • Понятие и виды текстовых редакторов. Основы форматирования документа: выбор параметров страницы, форматирование абзацев, символов, таблиц, списков. Компьютерные словари и системы машинного перевода текста. Системы оптического распознавания документов.

    контрольная работа, добавлен 25.01.2016

  • Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

    статья, добавлен 17.07.2013

  • Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.

    статья, добавлен 12.07.2021

  • Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.

    статья, добавлен 11.01.2018

  • Анализ принципов применения признаковых классификаторов для распознавания символов. Определение требований, которым должны удовлетворять используемые признаковые классификаторы. Разработка и обоснование их модификаций, удовлетворяющих этим требованиям.

    статья, добавлен 18.01.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.