Оптическое распознавание текста
Понимание изображения документа, порядок анализа проекционных профилей и преобразование Хафа. Процесс оптического распознавания символов и применение нейронных сетей. Классификация перцептронов, обучение и ограничение. Процесс работы сети Хопфилда.
Подобные документы
Направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей, сложность их внедрения. Возможности и перспективы развития подобных систем.
статья, добавлен 23.12.2024- 102. Особенности прогнозирования спортивных событий на основе использования аппарата нейронных сетей
Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.
статья, добавлен 15.12.2021 Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.
курсовая работа, добавлен 05.06.2011Разработка системы распознавания автомобилей, которая способна обнаруживать транспортные средства на фото и видеопотоке. Настройка нейронной сети и ее обучение на собранных данных. Графический интерфейс для взаимодействия пользователя с системой.
дипломная работа, добавлен 18.08.2018Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Анализ градиента для некоторых случаев нейронных сетей с вейвлет-разложением целевого вектора – нового типа нейронной сети, специализированного на распознавании речи и преобразовании сигнала, позволяющего ускорить обучение по сравнению с перцептроном.
статья, добавлен 28.05.2017- 108. Распознавание лиц
Создание алгоритма и программы для распознавания лица по фотографии c использованием библиотеки OpenCV методом искусственных нейронных сетей. Алгоритм бустинга для поиска лиц. Вычисление признаков и сравнение их совокупностей между собой разными методами.
курсовая работа, добавлен 05.03.2019 Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Рассмотрение развития, структуры, видов и применения нейросетей. Процесс обучения и передачи информации в нейросетях. Основные принципы работы итоговых нейросетей. Применение нейросетей для распознавания образов, обработки естественного языка, медицине.
статья, добавлен 26.02.2025Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Применение мультимодальной информационной технологии, которая объединила две биометрические характеристики: голос и лицо, для распознавания объектов. Алгоритм фильтрации для снижения шума в спектрограмме голоса и отображения деталей изображения лица.
статья, добавлен 28.11.2016- 114. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Оптическое распознавание символов как одно из новаторских решений, оказавшее большое влияние на многие отрасли. Испытание проблем с распознаванием различных шрифтов, стилей и раскладок в ранних системах OCR. Внедрение данной технологии в производстве.
статья, добавлен 21.02.2025Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Применение семантических сегментов для распознавания дороги. Описание метода использования сегментирования изображения. Улучшение качества базовой модели FCN. Применение функции Dice для вычисления перекрытия между предсказанным и фактическим классом.
статья, добавлен 18.06.2021Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.
курсовая работа, добавлен 26.08.2010Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Разработка модели для представления, фильтрации и сегментации изображения в современных системах распознавания образов. Сокращение вычислений, связанных с манипуляциями с каждым пикселем. Изображение как вещественная функция двух переменных х и y.
статья, добавлен 01.02.2019Применение нейронных сетей в банковской сфере с использованием Keras и Python. Улучшение процессов принятия решений в классификации и прогнозировании рисков. Методы, используемые для обучения и тестирования моделей, результатов их анализа и интерпретации.
статья, добавлен 15.10.2024- 122. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009- 124. Нейронные сети
История искусственных нейронных сетей. Модель формального нейрона Питтса и персептрон Розенблатта. Синапс как элементарная структура и функциональный узел между двумя нейронами. Примеры наиболее часто используемых преобразовательных функций Хопфилда.
презентация, добавлен 25.06.2013 Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018