Оптическое распознавание текста

Понимание изображения документа, порядок анализа проекционных профилей и преобразование Хафа. Процесс оптического распознавания символов и применение нейронных сетей. Классификация перцептронов, обучение и ограничение. Процесс работы сети Хопфилда.

Подобные документы

  • Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.

    курсовая работа, добавлен 05.06.2011

  • Анализ градиента для некоторых случаев нейронных сетей с вейвлет-разложением целевого вектора – нового типа нейронной сети, специализированного на распознавании речи и преобразовании сигнала, позволяющего ускорить обучение по сравнению с перцептроном.

    статья, добавлен 28.05.2017

  • Создание алгоритма и программы для распознавания лица по фотографии c использованием библиотеки OpenCV методом искусственных нейронных сетей. Алгоритм бустинга для поиска лиц. Вычисление признаков и сравнение их совокупностей между собой разными методами.

    курсовая работа, добавлен 05.03.2019

  • Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.

    дипломная работа, добавлен 12.01.2012

  • Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.

    статья, добавлен 03.02.2021

  • Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.

    статья, добавлен 30.04.2018

  • Применение мультимодальной информационной технологии, которая объединила две биометрические характеристики: голос и лицо, для распознавания объектов. Алгоритм фильтрации для снижения шума в спектрограмме голоса и отображения деталей изображения лица.

    статья, добавлен 28.11.2016

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Применение семантических сегментов для распознавания дороги. Описание метода использования сегментирования изображения. Улучшение качества базовой модели FCN. Применение функции Dice для вычисления перекрытия между предсказанным и фактическим классом.

    статья, добавлен 18.06.2021

  • Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.

    курсовая работа, добавлен 26.08.2010

  • Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.

    статья, добавлен 20.02.2019

  • Разработка модели для представления, фильтрации и сегментации изображения в современных системах распознавания образов. Сокращение вычислений, связанных с манипуляциями с каждым пикселем. Изображение как вещественная функция двух переменных х и y.

    статья, добавлен 01.02.2019

  • Применение нейронных сетей в банковской сфере с использованием Keras и Python. Улучшение процессов принятия решений в классификации и прогнозировании рисков. Методы, используемые для обучения и тестирования моделей, результатов их анализа и интерпретации.

    статья, добавлен 15.10.2024

  • Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

    реферат, добавлен 20.03.2009

  • Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

    реферат, добавлен 08.10.2011

  • Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.

    статья, добавлен 29.07.2018

  • История искусственных нейронных сетей. Модель формального нейрона Питтса и персептрон Розенблатта. Синапс как элементарная структура и функциональный узел между двумя нейронами. Примеры наиболее часто используемых преобразовательных функций Хопфилда.

    презентация, добавлен 25.06.2013

  • Параметризация свёрточной нейронной сети для осуществления семантического анализа текста и определения его эмоциональной окраски. Архитектура сети, её обучение и тестирование с использованием объектно-ориентированного языка Python и библиотеки Keras.

    статья, добавлен 19.02.2019

  • Разработка программного комплекса для распознавания жестового языка инвалидов с нарушением слуха на основе алгоритмов машинного обучения. Распознавание лиц на основе применения метода Виолы-Джонса, Вейвлет-преобразования и метода главных компонент.

    статья, добавлен 14.03.2019

  • Анализ библиотек оптического распознавания символов. Описание пользовательского сценария мобильного приложения. Модули сканирования и распознавания визитных карточек, отображения сохранённых контактов, настроек приложения. Дизайн интерфейса программы.

    дипломная работа, добавлен 04.12.2019

  • Базовые теоретические сведения о преобразовании Хафа. Разработка инвариантной к аффинным преобразованиям математической модели для обнаружения геометрических объектов на изображении с помощью преобразования Хафа. Графический интерфейс программы.

    дипломная работа, добавлен 30.08.2016

  • Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.

    дипломная работа, добавлен 28.10.2019

  • Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.

    статья, добавлен 21.05.2021

  • Фрактальное кодирование изображений для распознавания. Анализ пространственного распределения доменных и ранговых блоков, полученных в процессе кодирования. Построение фрактального кода, снижающего влияние дефектов изображения на качество распознавания.

    статья, добавлен 27.05.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.