Функции: обратные отношения и композиции отношений

Функции и бинарные отношения. Рефлексивные, транзитивные и симметричные отношения. Диалектическое и историческое развитие фундаментальных понятий математики. Идея функциональной зависимости в первых математически выраженных соотношениях между величинами.

Подобные документы

  • Характеристическое свойство - признак, которым обладает каждый элемент, принадлежащий множеству. Круги Эйлера - особые чертежи, при помощи которых наглядно представляют отношения между множествами. Изображение декартова произведения при помощи графа.

    презентация, добавлен 20.12.2015

  • Особенность использования математики в экономических процессах. Изучение специфических математических методов, которые основываются на основных постулатах теории вероятностей. Характеристика разложения функции в бесконечную сумму степенных функций.

    статья, добавлен 27.02.2019

  • Математический анализ функции одного переменного. Признаки сходимости рядов со знакопостоянными членами. Теория вероятностей и математическая статистика. Построение эмпирической функции распределения. Постановка задачи математического программирования.

    учебное пособие, добавлен 11.04.2016

  • Язык математики и его основные элементы. Функции и операции над ними. Интегральное исчисление и его приложения. Множества, мера и их применения. Математические модели и гуманитарные науки. Проблемы и перспективы современной прикладной математики.

    курс лекций, добавлен 14.08.2015

  • Греки классического периода - родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.

    реферат, добавлен 15.10.2011

  • Сущность программы логицизма - определение основных, исходных понятий чистой математики в терминах логики, а её фундаментальные законы доказать как теоремы логики. Перевод на язык логики основных понятий арифметики. Первый известный логицист Г. Фреге.

    статья, добавлен 02.10.2018

  • Характеристика математики как науки о количественных отношениях и пространственных формах действительного мира, особенности ее назначения. Появление счетных функций: умножения, деления, сложения и вычитания чисел, первые геометрические понятия и цифры.

    презентация, добавлен 19.11.2014

  • Понятие функции, ее график, история развития. Великие математики и их труды: Лейбниц, Бернулли, Эйлер, Лобачевский. Примеры функций, которые рассматриваются в школе: линейная, тригонометрическая и пр. График гармонического колебания, свободного падения.

    презентация, добавлен 16.11.2015

  • Изображение декартового произведения множеств на координатной плоскости. Отражение отношения между множествами на кругах Эйлера. Разбиение множества на классы. Операция объединения и операция пересечения множеств. Декартово произведение n-множеств.

    контрольная работа, добавлен 28.04.2016

  • Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.

    лекция, добавлен 13.04.2015

  • Диаграмма Эйлера-Венна как геометрическая схема, с помощью которой можно изобразить отношения между подмножествами для наглядного представления. Дизъюнкция - операция логики, отражающая употребление союза "или" в содержательных логических выводах.

    контрольная работа, добавлен 08.01.2016

  • Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.

    реферат, добавлен 06.07.2009

  • Ввод простейших команд в Maxima. Решение задач элементарной математики и линейной алгебры. Программирование в Maxima на встроенном макроязыке. Построение графиков функций. Вычисление пределов и производных функции. Функции для работы с матрицами.

    курсовая работа, добавлен 14.05.2014

  • Изучение вопросов существования точек соприкосновения между математикой и лингвистикой. Рассмотрение отношения к математике известного русского лингвиста Е.Д. Поливанова. Раздление наук на прикладные и фундаментальные в современном научном мире.

    статья, добавлен 13.04.2021

  • Полное приращение функции. Полный дифференциал функции. Касательная плоскость и нормальный вектор. Точки экстремума функции. Частные производные первого и второго порядка от функции. Направляющие косинусы вектора. Тангенс угла наклона касательной.

    контрольная работа, добавлен 06.06.2012

  • Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.

    учебное пособие, добавлен 29.11.2014

  • Понятие показательной функции и методы построения ее графиков. Основные свойства функции: четность; убывание; ограничение сверху и снизу; непрерывность. Определение логарифмической функции в математическом анализе и теории дифференциальных уравнений.

    презентация, добавлен 05.03.2012

  • Анализ интерполяции функций, построение по заданной функции другой, значения которой совпадают со значениями заданной функции в некотором числе точек. Применение методов вычислительной математики для исследования результатов химического эксперимента.

    курсовая работа, добавлен 07.05.2020

  • Дифференцируемые функции своих аргументов. Вычисление производной сложной функции. Свойство инвариантности формы первого дифференциала. Теорема производной обратной функции, ее геометрический смысл. Производная степенно показательной функции, ее алгоритм.

    лекция, добавлен 26.01.2014

  • Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.

    реферат, добавлен 27.03.2015

  • Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.

    курс лекций, добавлен 15.09.2017

  • Оценка основных понятий функциональной зависимости. Дифференциальное исчисление функций одной переменной. Характеристика неопределенных интегралов, исследование функций. Понятие кратного интеграла. Определение особенностей дифференциальных уравнений.

    курс лекций, добавлен 20.08.2017

  • Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.

    учебное пособие, добавлен 28.12.2013

  • Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.

    контрольная работа, добавлен 22.04.2012

  • Определение и характеристика главных свойств тригонометрических и обратных тригонометрических функций. Изучение основных типов тригонометрических неравенств. Рассмотрение формул, упрощающих выражения и содержащих обратные тригонометрические функции.

    контрольная работа, добавлен 15.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.