Функции: обратные отношения и композиции отношений
Функции и бинарные отношения. Рефлексивные, транзитивные и симметричные отношения. Диалектическое и историческое развитие фундаментальных понятий математики. Идея функциональной зависимости в первых математически выраженных соотношениях между величинами.
Подобные документы
Бинарные отношения в школьном курсе математики. Отношение как одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении. Бинарные отношения: рефлексивность, симметричность, транзитивность, параллельность.
презентация, добавлен 23.01.2021Антисимметричные и транзитивные отношения перпендикулярности на множестве прямых на плоскости. Неизоморфные отношения частичного порядка на четырехэлементном множестве. Доказательство логического тождества с помощью диаграмм Эйлера, логика предикатов.
контрольная работа, добавлен 21.10.2015Отношения, связывающие элементы множеств. Свойства бинарных отношений. Функциональные отношения. Отношения на заданном двухэлементном множестве. Выделение отношений эквивалентности и построение классов эквивалентности. Классификация отношений порядка.
лабораторная работа, добавлен 17.09.2019Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.
реферат, добавлен 19.01.2012Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.
лекция, добавлен 29.09.2013Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014Функция – одно из ключевых математических, общенаучных понятий. Функциональная зависимость - форма устойчивой взаимосвязи между объективными явлениями или отражающими их величинами, при которой изменение одних вызывает количественное изменение других.
статья, добавлен 20.02.2020Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.
лекция, добавлен 25.12.2016Производная функции как одно из фундаментальных понятий математики. Применение производной при решении физических, химических и биологических задач. Особенности решения с помощью производной функции задач с географическим и экономическим содержанием.
творческая работа, добавлен 25.01.2015Определение функции, ее свойства. Основные элементарные функции. Предел функции в точке, способы его вычисления. Вычисление предела отношения бесконечно малых функций. Раскрытие неопределенностей. Доказательство первого и второго замечательных пределов.
лекция, добавлен 29.09.2014Особенности развития естествознания и математической науки. Определение и сущность функции в XVIII веке. Роль понятия функциональной зависимости в познании реального мира. Общее определение функции в XIX веке и новые шаги в дальнейшем развитии понятия.
реферат, добавлен 10.03.2012История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.
контрольная работа, добавлен 16.02.2022Развертка выпуклого многогранного угла. Правильные многогранники в системе гармоничного устройства мира Кеплера. Музыкальные отношения в платоновых телах. Система элементов, канонизированная Аристотелем. Математически закономерное устройство мироздания.
доклад, добавлен 19.05.2014Простейшие элементарные функции: линейная, квадратичная, логарифмическая, тригонометрическая и показательная. График квадратичной функции - парабола. Область определения - множество R всех действительных чисел. Обратные тригонометрические функции.
реферат, добавлен 27.11.2014Равенство отношения минимума модуля первой производной функции Ляпунова на сечении к значению функции. Траектория линеаризованной в окрестности состояния равновесия системы с начальной точкой. Методика построения условно-экстремальной функции Ляпунова.
статья, добавлен 12.05.2018Теорема, которая выражает связь между бесконечно малыми и большими величинами, и ее доказательство. Исследование условия, при котором функция является бесконечно малой или большой величиной. Изучение обратной тригонометрической функции косинуса угла.
презентация, добавлен 21.09.2013Определение основных понятий элементарной математики. Операции над множествами и законы для подмножеств: коммутативности (переместительный закон) и ассоциативности (сочетательный закон). Отображения, а также отношения эквивалентности и упорядоченности.
реферат, добавлен 17.01.2011Этапы развития математики как науки. Становление математики в Древней Греции, Индии, Средней Азии. Введение системы координат, методов измерения величин и понятия функции. Вклад русских ученых в развитие математики. Перспективы развития кибернетики.
реферат, добавлен 18.09.2014Свойства, которыми обладают бинарные отношения на множестве натуральных чисел. Область определения предиката. Построение матрицы смежности. Рефлексивное, антисимметричное и транзитивное отношение перпендикулярности на множестве прямых в пространстве.
контрольная работа, добавлен 28.10.2014Понятие алгоритма, неформальная вычислимость. Частично-рекурсивные функции. Элементарная арифметика и неполнота. Арифметические функции и отношения. Варианты теории чисел. Теорема и последовательность Гудстейна. Задачи разрешения и задачи оптимизации.
учебное пособие, добавлен 07.04.2016Доказано, что предел максимального среднего равен сумме пространственного среднего функции и добавки; добавка зависит от отношения максимальной нормы скорости к минимальной. Локально интегрируемые по Лебегу функции. Теорема о усреднении движений на торе.
статья, добавлен 31.05.2013Описание основных свойств и области определения математических функций: линейной, степенной, квадратичной, показательной, логарифмической. Построение графиков. Множество значений функции синус, тангенс, котангенс. Обратные тригонометрические функции.
контрольная работа, добавлен 10.04.2011Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.
курсовая работа, добавлен 16.08.2010Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Учения о тригонометрических величинах. Греческая наука и ионийская школа натурфилософии.
реферат, добавлен 05.01.2015