Метод множителей Лагранжа
Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
Подобные документы
Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Исследование понятия дифференциала функции, его свойств и геометрического смысла. Изучение теоремы о связи бесконечно малых величин с пределами функций. Определение приращения и дифференциала независимой переменной. Примеры решения задач с производными.
презентация, добавлен 21.09.2013Рассмотрение алгоритма решения задачи с дифференцируемой целевой функцией методом замены переменных и методом множителей Лагранжа. Определение особенностей постановки задачи условной минимизации с ограничениями-равенствами ограничениями-неравенствами.
презентация, добавлен 09.07.2015Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.
реферат, добавлен 15.08.2014Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
шпаргалка, добавлен 25.01.2016Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
дипломная работа, добавлен 16.01.2014Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.
лекция, добавлен 29.09.2014Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.
учебное пособие, добавлен 28.08.2017Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.
лекция, добавлен 29.09.2013Отличие приращения функции от дифференциала на бесконечно малую величину. Изучение формулы, которая может использоваться для приближенных вычислений. Нахождение производной функции дифференциала. Исследование примеров вычисления корней n-ой степени.
презентация, добавлен 21.09.2013Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.
презентация, добавлен 29.09.2017Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
лекция, добавлен 29.09.2013Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.
контрольная работа, добавлен 18.12.2013Определение и расчет производной функции. Формулы приращения дифференциала. Геометрический и физический смысл производной и дифференциала. Мгновенная скорость точки в момент времени. Использование дифференциала для приближенных вычислений прироста.
лекция, добавлен 26.01.2014Дифференциальное уравнение как соотношение между функциями и их производными в основе математического моделирования. Особенности уравнения в полных дифференциалах. Условие полного дифференциала (необходимый признак уравнения в полных дифференциалах).
реферат, добавлен 21.08.2017Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.
лекция, добавлен 26.01.2014Исследование линейно-квадратичной задачи управления процессом колебаний мембраны. Применение метода множителей Лагранжа. Получение системы интегро-дифференциальных уравнений Риккати с частными производными. Определение необходимых условий оптимальности.
статья, добавлен 28.08.2016Задачи об оптимизации объекта управления в динамике. Общая задача Лагранжа, ее значение. Условие стационарности функционала, выраженное уравнениями Эйлера-Лагранжа. Расчет оптимального управления классическим методом вариационного исчисления уравнения.
контрольная работа, добавлен 22.07.2015Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014Определение критериев выпуклости и вогнутости функций. Задачи безусловной оптимизации и необходимые условия оптимальности. Рассмотрение задачи с ограничениями-неравенствами. Рассмотрение сущности множителей Лагранжа и условий дополняющей нежесткости.
лекция, добавлен 06.09.2017Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.
контрольная работа, добавлен 26.12.2011Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.
контрольная работа, добавлен 16.10.2017Понятие полного и частного приращения функции. Особенности определения частной производной функции нескольких переменных по одной из этих переменных. Сущность частных производных второго порядка. Математическое представление смешанных производных.
презентация, добавлен 17.09.2013