Метод множителей Лагранжа

Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.

Подобные документы

  • Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.

    контрольная работа, добавлен 03.06.2015

  • Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.

    презентация, добавлен 18.09.2013

  • Характеристика методики аналитического нахождения минимального значения функции через необходимое и достаточное условие экстремума. Реализация алгоритма поиска минимального значения функции методом градиентного спуска на языке программирования С++.

    курсовая работа, добавлен 28.10.2017

  • Обзор основных понятий о дифференциале функции и его применении в приближенных вычислениях. Определение дифференциала алгебраической суммы конечного числа дифференцируемых функций. Инвариантность формы дифференциала. Вынос постоянного множителя за знак.

    презентация, добавлен 21.09.2013

  • Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.

    презентация, добавлен 29.10.2017

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Сущность частного приращения по переменной в определенной точке, особенности наличия предела и его определение. Понятие дифференцируемости функции двух переменных, необходимое условие и достаточные. Характеристика основных теорем частных производных.

    лекция, добавлен 29.09.2013

  • Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.

    контрольная работа, добавлен 01.10.2013

  • Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.

    доклад, добавлен 20.05.2014

  • Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.

    курсовая работа, добавлен 16.09.2013

  • Доказательство теоремы общей декартовой системы координат при условии не асимптотического направления уравнений. Определение координат для произведения двух линейных множителей. Способы параллельного переноса декартового комплекса второго порядка.

    реферат, добавлен 27.11.2014

  • Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.

    лекция, добавлен 29.09.2013

  • Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.

    контрольная работа, добавлен 16.11.2014

  • Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.

    курсовая работа, добавлен 10.11.2010

  • Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.

    шпаргалка, добавлен 02.02.2016

  • Понятие неявных функций, условие их существования и основные разновидности: одного и двух переменных. Сущность дифференцируемости, ее способы определения. Касательная плоскость и нормаль к поверхности. Производная по направлению и описание градиента.

    лекция, добавлен 29.09.2013

  • Исследование и построение графика функции. Вычисление односторонних пределов и точек пересечения с осями координат. Расчет частных производных первого порядка. Изучение на экстремум функции двух переменных. Проведение поиска выпуклостей и точек перегиба.

    контрольная работа, добавлен 22.10.2013

  • Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.

    контрольная работа, добавлен 03.06.2009

  • Знаходження функції на основі експериментальних даних за методом найменших квадратів для параболічної залежності. Пошук екстремуму функції за умови, що аргументи задовольняють умові зв’язку. Функція Лагранжа. Нормальна система методу найменших квадратів.

    контрольная работа, добавлен 12.11.2017

  • Понятие функции от матрицы: определение, значение, основные свойства. Построение интерполяционного многочлена Лагранжа-Сильвестра. Спектральная теорема для простых матриц и ее следствие. Характеристика эрмитовых, квадратичных и неотрицательных матриц.

    контрольная работа, добавлен 31.10.2010

  • Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.

    презентация, добавлен 07.07.2015

  • Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.

    курсовая работа, добавлен 19.05.2015

  • Нахождение области определения функции двух вещественных переменных. Получение уравнения изолиний функции двух вещественных переменных. Нормальный вектор касательной плоскости. Математические модели пары двойственных задач линейного программирования.

    контрольная работа, добавлен 25.06.2013

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.

    контрольная работа, добавлен 13.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.