Поиск кратчайших путей в графе методом Дейкстры

История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.

Подобные документы

  • Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.

    научная работа, добавлен 03.05.2019

  • Сущность проблемы асимптотического поведения функции количества путей. Рассмотрение конечных и бесконечных древовидных граф с одной особой вершиной в корне, анализ регулярных граф с одной особой вершиной. Разработка алгоритмов на языках WolframLanguage.

    дипломная работа, добавлен 28.08.2020

  • Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.

    презентация, добавлен 31.10.2013

  • Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.

    курсовая работа, добавлен 11.06.2013

  • Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.

    курсовая работа, добавлен 20.01.2016

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • Основные понятия теории графов и ее приложения к исследованию линейных систем, задачам минимизации, а также сетевого планирования. Приведение примеров решения задач различной сложности с подробными объяснениями. Задачи для самостоятельной работы.

    методичка, добавлен 18.06.2013

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа, добавлен 04.12.2019

  • Планируемый ЛП-поиск как алгоритм, объединяющий стохастические модели, свойственные методу Монте-Карло и планирование вычислительного эксперимента. Методика проведения однофакторного дисперсионного анализа по всем параметрам для каждого критерия.

    статья, добавлен 25.08.2020

  • Определение кратчайших расстояний между пунктами транспортной сети. Вычисление оптимального варианта закрепления получателей за поставщиками однородной продукции. Грузы, перевозимые типами подвижного состава. Закрепление потребителей за поставщиками.

    контрольная работа, добавлен 29.05.2014

  • Решение задачи маршрутизации в информационной сети, в которой имеются дуги, не влияющие на качество сигнала – нейтральные, и снижающие его качество – регрессивные. Расчет кратчайшего пути на множестве путей, удовлетворяющих дополнительному ограничению.

    статья, добавлен 29.06.2017

  • История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

    презентация, добавлен 28.02.2012

  • Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.

    курсовая работа, добавлен 20.02.2019

  • Составление плана перевозок продукции со склада фирмы в четыре торговые точки области, обеспечивающего минимальные издержки на перевозки. Анализ математической модели. Использование метода Дейкстры. Построение графа, соответствующего матрице смежности.

    задача, добавлен 02.09.2013

  • Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.

    презентация, добавлен 15.10.2016

  • Определение кратчайшего пути между вершинами сети как классический пример сетевых задач. Характеристика ориентированного и неориентированного графа. Методы генерации исходного допустимого потока. Метод Минти для решения задачи о кратчайшем пути в сети.

    контрольная работа, добавлен 24.01.2011

  • Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.

    статья, добавлен 12.06.2016

  • Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.

    реферат, добавлен 12.07.2015

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • Рассмотрение примера графа для пояснения логики поиска всех максимальных независимых множеств. Метод генерации всех максимальных независимых множеств графа. Иллюстрация задачи о наименьшем покрытии. Поиск оптимального паросочетания в двудольном графе.

    презентация, добавлен 09.09.2017

  • Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.

    реферат, добавлен 27.03.2011

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.