Поиск кратчайших путей в графе методом Дейкстры

История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.

Подобные документы

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Совместность системы линейных уравнений методом Гаусса; средствами матричного исчисления. Решение векторных задач методом Крамера. Условие линейной независимости и координаты векторов в базисе. Решение задач с построением графика, пределы функции.

    контрольная работа, добавлен 11.03.2012

  • Алгоритм решения задач на нахождение расстояния между скрещивающимися прямыми. Нормаль как прямая, перпендикулярная касательному пространству. Методика измерения величины двугранного угла. Формула для вычисления прямоугольных декартовых координат.

    курсовая работа, добавлен 17.06.2018

  • Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.

    реферат, добавлен 11.11.2010

  • Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.

    статья, добавлен 29.04.2017

  • Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.

    учебное пособие, добавлен 15.10.2016

  • Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.

    контрольная работа, добавлен 29.11.2016

  • Определение понятия "магического квадрата", история его появления и развития. Способы построения магических квадратов некоторых порядков и различных степеней сложности. Постановка и решение задач их исследования, а также решение задачи Альбрехта Дюрера.

    реферат, добавлен 18.04.2014

  • Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.

    лекция, добавлен 22.07.2015

  • Формулировка задачи линейного программирования. Решение задачи методом симплекс-таблиц и симплекс-методом с применением искусственного базиса. Составление программы для нахождения решения задачи линейного программирования методом симплексных таблиц.

    курсовая работа, добавлен 21.12.2012

  • Построение модели системы организации маршрутов в транспортной системе с предфрактальных графов. Сравнительный анализ вычислительной сложности предложенного алгоритма с известным алгоритмом Прима. Алгоритм Бета 2 выделения наибольших максимальных цепей.

    реферат, добавлен 20.05.2017

  • Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.

    курсовая работа, добавлен 16.06.2021

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

    контрольная работа, добавлен 18.12.2015

  • Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.

    курсовая работа, добавлен 21.12.2011

  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа, добавлен 03.04.2013

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.

    контрольная работа, добавлен 29.01.2014

  • Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.

    курсовая работа, добавлен 10.03.2020

  • Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.

    контрольная работа, добавлен 25.10.2013

  • Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.

    доклад, добавлен 29.12.2014

  • Основные направления модернизации математического образования. Недостаточность рассмотренных оригинальных способов решения задач с параметрами. Основные понятия и термины. Основные типы задач с параметрами. Линейные, квадратные и иррациональные уравнения.

    курсовая работа, добавлен 09.12.2012

  • Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

    задача, добавлен 11.09.2012

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.

    реферат, добавлен 18.12.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.