О геометрии распределения косимплектического Би-метрического многообразия
Разработка теоремы, утверждающей, что заданная структура определяет на многообразии D структуру косимплектического Би-метрического многообразия тогда, когда распределение D многообразия M является распределением нулевой кривизны. Доказательство теоремы.
Подобные документы
Методика определения переносного ускорения, показатели и коэффициенты, используемые для его описания. Порядок вывода и доказательства теоремы Кориолиса. Расчет абсолютного ускорения. Матричная форма исследуемой теоремы в подвижной системе координат.
лекция, добавлен 15.03.2015- 102. Рекурсивные функции
Сущность и значение кодирования программ. Характеристика и отличительные черты теоремы о параметризации, описание и специфика универсальных функций. Применение теоремы Клини о нормальной форме. Синтаксис и семантика, теорема Райса и математическая логика.
контрольная работа, добавлен 30.12.2015 Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.
статья, добавлен 26.01.2019Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
реферат, добавлен 01.10.2014Определение закона Пуассона. Основные характеристики распределения. Дополнительные характеристики распределения. Связь с биномиальным распределением. Вероятность события в повторных независимых испытаниях, а также при большом количестве повторов опыта.
реферат, добавлен 19.12.2012Анализ двухступенчатой процедуры выполнения наблюдений при неизвестном значении параметра, определяющего закон распределения результатов наблюдений, и принятия решений на их основе. Доказательство теоремы о асимптотической оптимальности процедуры.
статья, добавлен 18.02.2016Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.
разработка урока, добавлен 20.12.2010Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.
статья, добавлен 11.07.2015- 109. Предельные теоремы
Формирования условий в центральных предельных теоремах, при которых последовательности частичных сумм случайных величин сходятся к нормальному распределению. Закон больших чисел. Предельные теоремы перехода от дискретных случайных процессов к непрерывным.
лекция, добавлен 21.03.2018 На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.
статья, добавлен 11.07.2018Основные закономерности и содержание геометрии Лобачевского, понятие псевдосферы, модели Клейна и Пуанкаре. Анализ поверхности постоянной отрицательной кривизны. Аксиоматика евклидовой геометрии: связь прямой и точки, отрезка непрерывности и плоскости.
реферат, добавлен 21.10.2014Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
лекция, добавлен 17.01.2014Сравнения в кольце целых чисел. Основные теоремы о сравнениях. Сравнения первой степени с одной переменной. Теоремы о неразрешимости и разрешимости сравнений. Сравнения по простому модулю с одним и с несколькими неизвестным. Системы сравнений, их виды.
курсовая работа, добавлен 09.06.2016Приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника. Рассмотрение полной формулы теоремы Пифагора. Математический расчет суммы квадратов длин катетов. Количественные оценки параметров прямоугольного треугольника на плоскости.
статья, добавлен 26.01.2019Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.
курс лекций, добавлен 02.05.2014Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
контрольная работа, добавлен 17.11.2015Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.
презентация, добавлен 17.09.2013Приведены формулы, устанавливающие связь между цугами и составными событиями бинарной последовательности. Доказана теорема: "Формула для цуг из составных событий", что переводит комбинаторику длинных последовательностей на физико-математический уровень.
статья, добавлен 11.07.2018- 120. Окружность Эйлера
Рассмотрение Теоремы Фейербаха и теоремы Эйлера об окружности девяти точек. Ознакомление с историей ее доказательства и названия. Построение прямой Эйлера и описанной окружности. Изучение свойств окружности Эйлера, нахождение ее центра и радиуса.
презентация, добавлен 08.09.2014 Применение принципа сведения для систем с многообразием стационарных состояний. Использование метода геометрической декомпозиции для редукции задач об устойчивости при постоянно действующих возмущениях и устойчивости от входа к вектору состояния системы.
статья, добавлен 31.05.2013- 122. Бесконечно малые и бесконечно большие величины. Теоремы о пределах. Раскрытие неопределенностей
Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
лекция, добавлен 07.07.2015 Понятие нормального распределения, также называемого гауссовским распределением, его свойства и причины его популярности в финансах. Моделирование нормальных случайных величин. Определение коэффициента Шарпа. Вычисление вероятностей и риск-метрик.
эссе, добавлен 01.06.2014Исследование класса рассуждающих и рефлексивных сетей, позволяющих моделировать синхронные рассуждения нескольких субъектов. Разработка и доказательство теоремы, определяющей свойство алгебр порождать функциональные структуры для вычислительных моделей.
автореферат, добавлен 30.04.2018Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012