Вычисление пределов
Применение правила Лопиталя и метода интегрирования. Частный вид наклонной асимптоты. Глобальные и локальные экстремумы. Участки монотонности и точки экстремумов. Определение объема тела вращения вокруг оси абсцисс плоской фигуры, ограниченной кривыми.
Подобные документы
По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.
задача, добавлен 03.05.2009Определение двойного интеграла и его свойства. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат. Определение прямоугольной и произвольной областей интегрирования.
лекция, добавлен 28.03.2020Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.
контрольная работа, добавлен 05.06.2014Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.
контрольная работа, добавлен 08.05.2014Исследование сущности способа совмещения, частного случая вращения плоскости вокруг горизонтали и фронтали. Анализ метода решения задач преобразования плоскости общего положения в плоскость уровня. Анализ вращения вокруг следов плоскости и линии уровня.
реферат, добавлен 25.10.2011Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
курсовая работа, добавлен 18.08.2009Понятие тройного интеграла, его свойства, правила вычисления. Цилиндрические и сферические координаты в интегрировании. Определение координат центра тяжести тела, моментов инерции тела относительно координатных осей и кинетической энергии части тела.
реферат, добавлен 21.01.2011Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.
контрольная работа, добавлен 07.04.2017Особенности криволинейной трапецией. Характеристика фигуры, ограниченной прямыми. Рассмотрение формулы для вычисления площади криволинейной трапеции. Нахождение точки пересечения кривых. Методология вычисления площади фигуры, ограниченной линиями.
задача, добавлен 17.02.2016Задачи, приводящие к понятию определенного интеграла, сфера его применения и геометрический смысл. Вычисление площади плоской фигуры. Объёмы тел вращения. Характеристика кривых, встречаются при вычислении определенного интеграла. Исчисление длины дуги.
дипломная работа, добавлен 14.05.2011Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
методичка, добавлен 14.12.2016Особенность интегрирования тригонометрических, иррациональных и дробно-рациональных функций. Характеристика вычисления различных видов интегралов. Главный анализ нахождения площади области, ограниченной кривыми, заданными в декартовых координатах.
методичка, добавлен 28.10.2015Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012Особенности расчета площади поверхности тела, полученного при вращении. Параметры прямоугольного треугольника, его вращение вокруг гипотенузы. Вращение прямоугольной и равнобокой трапеций вокруг большего основания. Использование теоремы Пифагора.
презентация, добавлен 26.05.2012Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015- 42. Тела вращения
Определение тела вращения. Виды, сечения вращения цилиндра, конуса и шара. Расчеты и формулы для определения площади поверхности этих геометрических тел. Варианты взаимного расположения сферы и плоскости. Практические примеры решения задач по геометрии.
презентация, добавлен 10.05.2015 Роль геометрических фигур в жизни человека. Использование их в строительстве, математике, науке и технике. Все геометрические фигуры имеют свои образы в окружающем мире. Объемные геометрические фигуры, их определение. Возникновение термина "Геометрия".
презентация, добавлен 11.05.2023Геометрическое понятие и характеристика тел вращения, способы их получения в разных плоскостях, методика расчета площади и объема фигур: конус, цилиндр, шар, многогранники. Принципы определения объема тела с известной площадью поперечного сечения.
реферат, добавлен 16.03.2016Ю.А. Виноградов - автор метода преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки. Методика расчета оболочек вращения, где каждый участок может выражаться своими дифференциальными уравнениями.
статья, добавлен 26.06.2016Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.
контрольная работа, добавлен 19.04.2016Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.
контрольная работа, добавлен 16.04.2012Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.
методичка, добавлен 21.03.2013Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016