Методы нелинейной оптимизации
Определение унимодальности функции. Точные и приближенные методы поиска экстремума. Метод перебора, по разрядного поиска, дихотомии, золотого сечения, средней точки, хорд и метод Ньютона. Сравнение методов оптимизации по скорости вычисления и точности.
Подобные документы
Роль математики в процессе моделирования. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике, природе. Ряд Фибоначчи - арифметическое выражение закона золотого деления.
реферат, добавлен 30.04.2009Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
презентация, добавлен 09.07.2015Примеры оптимизации унимодальной функции. Решение конечномерной экстремальной задачи методом выпуклого программирования. Оптимальное распределение однородных ресурсов. Решение задачи управления запасами при удовлетворенном и неудовлетворенном спросе.
курсовая работа, добавлен 11.12.2016Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.
контрольная работа, добавлен 30.10.2010Сущность и особенности оптимальных итерационных процессов. Характеристика итерационных методов первого и второго порядка. Использование итерационных методов линейных алгебраических уравнений. Решение систем нелинейных уравнений, методы уточнения корней.
дипломная работа, добавлен 06.10.2017Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
контрольная работа, добавлен 05.04.2021Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Задачи линейного программирования и их решение с помощью методов оптимизации. Построение целевой функции и определение ее минимального и максимального значений при заданных условиях-ограничениях. Решение данных задач симплекс-методом и заполнение таблиц.
контрольная работа, добавлен 06.06.2013Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.
статья, добавлен 10.07.2013Определение наилучшей функции по методике наименьших квадратов. Порядок вычисления интерполяционного полинома Лагранжа, который проходит через все заданные точки. Принципы и особенности представления приближенной функции многочленом второй степени.
контрольная работа, добавлен 15.05.2014Методы линейной аппроксимации, наискорейшего спуска. Первые производные целевой функции. Вычисление производных по аналитической формуле и конечно-разностной аппроксимации. Метод сопряженного градиента Флетчера-Ривса. Классификация Ньютоновских методов.
реферат, добавлен 21.04.2016Основные достижения в области методов решения оптимизационных задач. Теоретические основы математического аппарата поиска оптимума. Определение значения принципа максимума и динамического программирования в области задач оптимального управления.
реферат, добавлен 13.06.2019Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.
контрольная работа, добавлен 16.05.2014- 91. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
доклад, добавлен 09.10.2012 Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Основные свойства уникального ряда "золотого сечения". Определение полной алгебраической формулы общего члена последовательности. Специфические особенности чисел Фибоначчи. Способы графической иллюстрации, предполагаемая область применения ряда Люка.
доклад, добавлен 26.04.2014Характеристика вычислительных трудностей, связанных с барьерными функциями. Этапы алгоритма методы барьерных функций, теорема Лемма и отсутствие ограничений-равенств. Процесс преобразования задачи с ограничениями в задачу безусловной оптимизации.
лекция, добавлен 06.09.2017Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Закономерности реализации эвристических алгоритмов.
автореферат, добавлен 02.07.2018Рассмотрение математических закономерностей, лежащих в основе теории оптимизации. Изучение ряда содержательных и формализованных задач оптимизации. Определение этапов инженерного проектирования. Анализ процесса построения математической модели системы.
контрольная работа, добавлен 01.04.2020Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Исследование операций как метод, который дает в распоряжение инженера количественные методы для принятия решений по управлению процессов оптимизации. Математическая формулировка задач дискретного программирования. Достоинства и недостатки алгоритма.
лекция, добавлен 08.09.2013- 99. Золотое сечение
Функции чисел, понятие золотого сечения. Числа Фибоначчи, "Золотой" прямоугольник. Золотое сечение в живописи, особенности применения принципа золотого сечения в современный мире. Золотое сечение и тело человека. Рассмотрение работ Рафаэля, Дюрера.
контрольная работа, добавлен 11.09.2020 Изучение существующих математических методов оптимизации нелинейных стохастических систем. Обоснование возможности получения единой методики поиска оптимального управления систем, описываемых стохастическими дифференциально-разностными уравнениями.
автореферат, добавлен 28.03.2018