Ряды Фурье. Преобразования Фурье
Гармонические колебания (гармоники) и их характеристика. Основная система тригонометрических функций. Тригонометрический ряд Фурье, его особенности для четных и нечетных функций, достаточные условия сходимости. Ряд Фурье в комплексной форме, его интеграл.
Подобные документы
Изучение математического дискретного преобразования Фурье периодических последовательностей и последовательностей конечной длины. Овладение программными средствами его вычисления в MATLAB с использованием алгоритмов быстрого преобразования Фурье.
лабораторная работа, добавлен 18.10.2021Алгоритмы цифровой обработки сигналов. Эквивалентная запись, базисные синусоиды. Комплексное, двумерное дискретное преобразование Фурье, тождества Эйлера. Сигнал и его спектр. Ортогональность функций. Реконструкция сигнала по ограниченному ряду.
реферат, добавлен 18.03.2015Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
реферат, добавлен 26.03.2019Анализ новых формул преобразования Фурье по собственным функциям задачи Штурма-Лиувилля со смешанным спектром. Методы решения задач математической физики: колебание составного четвертьпространства, теплопроводность анизотропной многолистной пластины.
статья, добавлен 27.07.2016Модуль комплексной амплитуды как линейчатый спектр периодической функции. Связь между спектрами дискретизированного и непрерывного сигналов. Быстрое преобразование Фурье с прореживанием по времени. Определение числа итераций алгоритма, расчет множителя.
курсовая работа, добавлен 21.06.2019Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.
курс лекций, добавлен 05.03.2016Особенности использования преобразования Меллина и теорию вычетов. Метод Галеркина как запись исходных дифференциальных уравнений в слабой форме. Амплитудные функции ряда Фурье. Пример расчета показателей сингулярности в вершине анизотропного конуса.
статья, добавлен 02.11.2018Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
учебное пособие, добавлен 18.06.2015Рассмотрение плоского волнового фронта, ограниченного апертурой кадрового окна. Оценка операции абстрактного сложения. Исследование особенностей реализации нечетких логик методом Фурье-голографии. Определение интерпретации смысла логического заключения.
статья, добавлен 19.01.2018Комплексная форма интеграла Фурье. Оригинал и изображение в преобразовании Лапласа. Доказывание теоремы дифференцирования оригинала методом математической индукции. Применение элементарных методов при разложении правильной дроби на сумму простейших.
курсовая работа, добавлен 25.03.2014Исследование приложения двойных, тройных интегралов в пространстве, разложение функции в ряд Фурье, а также отыскание наибольшего и наименьшего значений функции в этой области, и решение задачи линейного программирования геометрическим и симплекс методом.
курсовая работа, добавлен 24.04.2011Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.
лекция, добавлен 18.05.2010Изучение задач линейного программирования (симплексный и геометрический методы), тройных интегралов и их приложения для решения геометрических, физических и других задач, отыскания коэффициентов Фурье, их применения в математических методах в экономике.
курсовая работа, добавлен 24.04.2011Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав
дипломная работа, добавлен 29.04.2024Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
статья, добавлен 29.04.2017Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.
презентация, добавлен 18.09.2013Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.
статья, добавлен 31.05.2013Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.
методичка, добавлен 21.04.2016История возникновения понятия функции, его исследования ученым Лейбницем. Сущность задачи о колебании струны, ее проблематика решения. Характеристика и основные возможности открытия Фурье. Сущность функционала и оператора, их главные задачи и принципы.
доклад, добавлен 29.10.2013Изучение античной греческой математики. Построение качественных, линейных количественных и нелинейных количественных моделей. Процесс структуризации данных. Уточнения и приближения. Корреляция и каузация. Аппроксимация функции конечным рядом Фурье.
контрольная работа, добавлен 29.10.2021Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.
презентация, добавлен 18.09.2013Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Понятие о тригонометрическом выражении. Тригонометрические функции и формулы тригонометрии, используемые для преобразования тригонометрических выражений. Знаки тригонометрических функций. Примеры решения задач с использованием формул преобразования.
презентация, добавлен 23.10.2013