Множественная регрессия и корреляция

Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.

Подобные документы

  • Проверка статистической гипотезы значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций, процедура линеаризации в решении нелинейной задачи регрессии. Построение полулогарифмической функции.

    курсовая работа, добавлен 19.03.2015

  • Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.

    контрольная работа, добавлен 14.06.2011

  • Выражение нелинейных соотношений между экономическими явлениями с помощью соответствующих нелинейных функций. Применение степенной функции в определении соотношений между явлениями. Спецификация модели. Отбор факторов построения множественной регрессии.

    контрольная работа, добавлен 06.11.2014

  • Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.

    контрольная работа, добавлен 15.05.2017

  • Проблема изучения взаимосвязей экономических показателей в экономическом анализе. Спецификация, смысл и оценка параметров линейной регрессии и корреляция, оценка их существенности. Интервалы прогноза по линейному уравнению регрессии. Нелинейная регрессия.

    контрольная работа, добавлен 28.02.2013

  • Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.

    лабораторная работа, добавлен 18.09.2012

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии. Определение коэффициентов автокорреляции уровней ряда первого и второго порядка.

    контрольная работа, добавлен 16.04.2020

  • Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.

    контрольная работа, добавлен 08.02.2022

  • Влияние мультиколлинеарности на коэффициенты регрессии, средства для ее смягчения. Зависимость от выборочного отклонения и объединение коррелированных переменных в одну. Устранение мультиколлинеарности при использовании дополнительной информации.

    презентация, добавлен 20.01.2015

  • Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.

    практическая работа, добавлен 16.05.2013

  • Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

    контрольная работа, добавлен 10.07.2016

  • Расчет матрицы парных коэффициентов корреляции и оценка статистической значимости коэффициентов корреляции. Связь цены квартиры с ее площадью. Уравнение множественной и линейной парной регрессии, детерминации, F-критерий Фишера, коэффициент эластичности.

    контрольная работа, добавлен 13.05.2014

  • Классы нелинейных регрессий. Корреляция для нелинейной регрессии, последовательность теста Бокса-Кокса. Коэффициент эластичности как характеристика силы связи фактора с результатом. Построение уравнения линейной регрессии и квадратичной зависимости.

    контрольная работа, добавлен 28.07.2013

  • Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.

    контрольная работа, добавлен 04.02.2014

  • Суть первичного рынка жилой недвижимости Волгограда. Анализ методик, влияющих на создание стоимости квартир на основе линейных и нелинейных моделей множественной регрессии, полученных методом наименьших квадратов и с использованием квантильной регрессии.

    статья, добавлен 03.12.2018

  • Оценка коэффициента линейной регрессии по методу наименьших квадратов. Модель кейнсианского типа. Определение эмпирических коэффициентов регрессии и корреляции в случае линейной модели регрессии. Решение системы нормальных уравнений по формулам Крамера.

    контрольная работа, добавлен 19.10.2013

  • Корреляционные поля и цель их построения. Коэффициенты уравнения парной линейной регрессии. Связь между коэффициентами регрессии и корреляции. Определение параметров парной линейной регрессии. Графическое представление уравнения парной линейной регрессии.

    реферат, добавлен 30.01.2013

  • Оценка и расчёт значимости коэффициентов уравнения множественной регрессии и корреляции с помощью f-критерия Стьюдента и t-статистики Стьюдента: интерпретация параметров, коэффициентов эластичности и стандартизированных бетта-коэффициентов уравнения.

    реферат, добавлен 08.06.2012

  • Понятие, предмет и задачи эконометрики. Спецификация моделей парной и множественной регрессии. Проверка значимости результатов с помощью критерия Фишера. Значение мультиколлениарности при отборе факторов. Моделирование сезонных и циклических колебаний.

    шпаргалка, добавлен 02.03.2014

  • Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.

    контрольная работа, добавлен 27.09.2011

  • Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.

    курс лекций, добавлен 27.11.2013

  • Расчет оценки параметров уравнения парной линейной регрессии. Оценка тесноты связи между признаками с помощью выборочного коэффициента корреляции. Построение доверительного интервала для коэффициента регрессии. Осуществление дисперсионного анализа.

    контрольная работа, добавлен 16.03.2017

  • Построение средствами регрессионного анализа математической модели зависимости стоимости квартиры в городе Смоленске от характеристик квартиры и ее расположения в городе. Построение уравнения множественной регрессии. Матрица парных коэффициентов.

    статья, добавлен 21.02.2018

  • Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.

    контрольная работа, добавлен 14.04.2021

  • Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.

    контрольная работа, добавлен 07.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.