Множественная регрессия и корреляция
Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.
Подобные документы
Множественная регрессия как наиболее распространенный метод в эконометрике. Отбор факторов при построении уравнения множественной регрессии. Метод наименьших квадратов, свойства оценок на его основе. Сравнение влияния различных факторов на результат.
лекция, добавлен 25.04.2015Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Отбор факторов в модель множественной регрессии. Линейная модель, матричная форма. Оценка параметров модели и качества множественной регрессии. Анализ и прогнозирование на основе многофакторных моделей. Анализ матрицы коэффициентов парной корреляции.
презентация, добавлен 26.12.2014Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.
методичка, добавлен 16.05.2016Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Парная регрессия и корреляция. Типы кривых, используемые при количественной оценке связей между двумя переменными. Построенные модели по индексу детерминации и средней ошибке аппроксимации. Отбор факторов при построении уравнения множественной регрессии.
курс лекций, добавлен 10.04.2010Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).
лабораторная работа, добавлен 19.02.2016Оценка практической значимости уравнения множественной регрессии с помощью показателя множественной корреляции и его квадрата – показателя детерминации. Теснота совместного влияния факторов на результат. Включение факторов в регрессионную модель.
реферат, добавлен 25.04.2015Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012Проведение статистической обработки информации с помощью табличного процессора Microsoft Excel. Использование R-квадрата для уравнения множественной регрессии и уровня значимости по t-критерию. Вычисление коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 04.05.2011Определение цели множественной регрессии. Изучение путей преодоления сильной межфакторной корреляции. Расчет величины импорта на определенный товар относительно отечественного производства, изменения запасов и его потребления на внутреннем рынке.
презентация, добавлен 09.04.2015Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.
задача, добавлен 14.05.2016Особенности эконометрического моделирования стоимости квартир. Порядок построения классической линейной модели множественной регрессии. Анализ показателей: индекса корреляции и детерминации, F-критерий Фишера. Оценка матрици на мультиколлинеарность.
контрольная работа, добавлен 12.01.2014Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.
задача, добавлен 16.03.2014Построение и анализ линейной множественной регрессии. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Интерпретация коэффициентов регрессии. Проверка на наличие автокорреляции и гетероскедастичность.
контрольная работа, добавлен 02.08.2013Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.
задача, добавлен 27.09.2016Проблемы спецификации модели: отбор факторов при построении множественной регрессии, выбор формы уравнения. Уровни ряда, составляющие временных рядов. Аддитивная, мультипликативная и смешанная модели. Пример построения корреляционного поля данных.
контрольная работа, добавлен 25.02.2013Определение зависимости среднедушевого потребления продукта от размера дохода и индекса цен. Построение матрицы парных коэффициентов корреляции. Оценка уравнения регрессии с помощью критериев Фишера и Стьюдента. Прогнозирование эластичности спроса.
контрольная работа, добавлен 01.11.2015- 20. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016 Основные понятия и формулы эконометрики. Решение типовых задач в MS Excel, построение линейного уравнения парной регрессии. Оценка статистической значимости уравнений регрессии и корреляции, их отдельных параметров с помощью критериев Фишера и Стьюдента.
учебное пособие, добавлен 18.03.2015Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
статья, добавлен 23.01.2019Уравнение зависимости объема предложения блага от цены этого блага и зарплаты сотрудников фирмы. Линейная модель множественной регрессии данных, расчёт автокорреляции остатков с помощью теста Дарбина-Уотсона. Уравнение регрессии с фиктивными переменными.
контрольная работа, добавлен 27.04.2013Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.
презентация, добавлен 02.10.2011