Теорема Гаусса-Остроградского

Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.

Подобные документы

  • Биографические сведения из жизни М. Остроградского, развитие математических способностей ученого, его обучение в университете. Научная и педагогическая деятельность в заведениях Петербурга. Факты из личной жизни М. Остроградского, смерть ученого.

    доклад, добавлен 15.12.2014

  • Характеристическая функция суммы независимых случайных величин. Центральная предельная теорема. Закон больших чисел в форме Бернулли. Основные задачи математической статистики. Группировка данных по интервалам, определение частот элементов выборки.

    лекция, добавлен 28.09.2017

  • Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.

    контрольная работа, добавлен 20.12.2011

  • Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.

    презентация, добавлен 15.12.2014

  • Краткая биография и первые научные достижения Франсуа Виета. Определение "формулы Виета" (зависимости между корнями и коэффициентами алгебраического уравнения). Доказательство теоремы и ее опровержение, а также практический пример использования.

    презентация, добавлен 22.02.2014

  • Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.

    реферат, добавлен 30.10.2010

  • Выведены формулы для решений уравнения Пифагора, они отличаются от общеизвестных формул древних. Формулы могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных значений показателя степени n.

    статья, добавлен 07.06.2008

  • Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.

    творческая работа, добавлен 12.06.2009

  • Краткий обзор развития тригонометрии, ее возникновение как одного из разделов астрономии. Теоремы сложения: тригонометрические функции суммы и разности аргументов, двойного и половинного аргумента, тангенсов, формулы площади треугольника, другие формулы.

    контрольная работа, добавлен 22.05.2009

  • Доказательство Великой теоремы Ферма на основе соответствия эллиптических кривых и модулярных форм. Применение формулы бинома И. Ньютона. Преобразование уравнения в эквивалентное кубическое, где кривая, соответствующая уравнению, является эллиптической.

    курсовая работа, добавлен 30.03.2017

  • Завершение проблемы великой теоремы Ферма (ТФ). Бесконечный спуск для нечётных показателей. Доказательство ТФ методами элементарной алгебры. Алгоритм решения Диофантовых уравнений. Закономерность распределения простых чисел в натуральном числовом ряду.

    статья, добавлен 30.03.2017

  • Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.

    доклад, добавлен 10.02.2014

  • Рассмотрение физических примеров скалярных полей. Нахождение и изображение линии и поверхности уровня скалярных полей. Изучение понятия вектор-градиент скалярного поля. Рассмотрение физического смысла потока векторного поля. Циркуляция векторного поля.

    презентация, добавлен 27.06.2015

  • Появление и особенности Великой теоремы Ферма, первые варианты доказательства. Влияние Второй мировой войны на изобретения логарифмической линейки. Характеристика метода Колывагина–Флаха, его использование. Математический анализ гипотезы Таниямы–Шимуры.

    контрольная работа, добавлен 06.05.2012

  • Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору.

    реферат, добавлен 20.03.2014

  • Доказательство теоремы, позволяющей решить проблему разрешимости (выполнимости) для формул исчисления высказываний, содержащих предикаты, зависящие от одного переменного. Представление равносильности в виде тождественно истинной формулы для любого поля.

    контрольная работа, добавлен 05.11.2017

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.

    статья, добавлен 03.03.2018

  • Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.

    доклад, добавлен 11.12.2017

  • Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.

    лекция, добавлен 29.09.2013

  • Ознакомление с историей доказательства теоремы Ферма. Исследование и анализ особенностей равенства для трёх действительных целых положительных чисел. Рассмотрение и характеристика преобразования уравнения, позволяющего получить квадратное уравнение.

    статья, добавлен 01.10.2015

  • Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.

    лекция, добавлен 17.01.2014

  • Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.

    статья, добавлен 11.07.2015

  • Формирования условий в центральных предельных теоремах, при которых последовательности частичных сумм случайных величин сходятся к нормальному распределению. Закон больших чисел. Предельные теоремы перехода от дискретных случайных процессов к непрерывным.

    лекция, добавлен 21.03.2018

  • Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.

    статья, добавлен 25.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.