Реальная многомерная произвольно-угольная система координат как развитие Декартовой прямоугольной трехмерной системы координат

Декартова система координат: порядок и принципы построения, определение координат, графическое решение систем линейных алгебраических уравнений. Реальная многомерная произвольно-угольная система координат. Закономерности решения "полнокровных" систем.

Подобные документы

  • Обзор формульного выражения общих уравнений прямой, отсекаемой на соответствующих осях координат. Изучение уравнений, определяющих расположение прямых на плоскости. Построение графика системы полярной оси координат по уравнению плоскостной прямой.

    лекция, добавлен 29.09.2013

  • Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

    курс лекций, добавлен 20.08.2017

  • Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 21.09.2017

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.

    контрольная работа, добавлен 29.04.2019

  • Знакомство с особенностями реализации программного обеспечения для решения системы линейных алгебраических уравнений методом квадратных корней. Рассмотрение способов применения методов спуска для решения систем нелинейных алгебраических уравнений.

    курсовая работа, добавлен 02.10.2013

  • Произвольный электростатический или магнитный скалярный потенциал как функция пространственных координат. Уравнение Лапласа. Цилиндрическая система координат в виде ряда Фурье. Метод разделения переменных для определения распределений потенциалов.

    реферат, добавлен 12.02.2013

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.

    контрольная работа, добавлен 26.07.2009

  • Історичні відомості про векторну алгебру (поняття та її основні засновники). Вектори і лінійні дії з векторами. Вектори в системі координат. Скалярний добуток векторів. Система координат. Векторний добуток двох векторів. Мішаний добуток векторів.

    лекция, добавлен 08.08.2014

  • Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.

    курсовая работа, добавлен 28.01.2012

  • Исследование кривой второго порядка, принципы и правила ее построения по каноническому уравнению. Преобразование координат на плоскости. Преобразование координат на плоскости. Приведение к каноническому виду общего уравнения кривой 2-ого порядка.

    контрольная работа, добавлен 06.06.2014

  • Понятие, виды и операции над векторами. Определение положения точки в декартовой системы координат. Отличия векторных от скалярных величин. Свойства смешанного произведения. Решения системы уравнений методом Крамера. Расчёт объема и высоты пирамиды.

    лекция, добавлен 21.09.2017

  • Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.

    контрольная работа, добавлен 01.05.2010

  • Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.

    дипломная работа, добавлен 18.09.2015

  • Понятие криволинейных координат точки. Контравариантные и ковариантные компоненты вектора. Ортогональные криволинейные параметры и условия их ортогональности. Определение выражения для скорости и ускорения точки в цилиндрической системе координат.

    учебное пособие, добавлен 28.12.2013

  • Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.

    презентация, добавлен 22.11.2015

  • Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.

    лекция, добавлен 26.01.2014

  • Особенности геометрического пространства системы декартовых прямоугольных координат. Формулировка примитивного физического пространства и уравнение баланса энергии. Принцип наименьшего действия в системе координат, приближения с точностью до макромира.

    статья, добавлен 10.04.2011

  • Исследование основных научных гипотез, раскрывающих математическую сущность декартовой системы координат и вычислений. Рассмотрение методов решения уравнений прямой на плоскости. Формульное выражение объекта при наличии заданной точки или отрезков.

    презентация, добавлен 01.09.2015

  • Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

    реферат, добавлен 16.03.2016

  • Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений

    реферат, добавлен 26.02.2010

  • Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.

    контрольная работа, добавлен 06.09.2008

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Построение однородной системы алгебраического уравнения с равной степенью составляющих многочленов. Обзор тривиальных и нетривиальных решений однородной системы. Составление матрицы линейно независимых координат. Очерк неоднородных решений уравнения.

    лекция, добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.