Реальная многомерная произвольно-угольная система координат как развитие Декартовой прямоугольной трехмерной системы координат

Декартова система координат: порядок и принципы построения, определение координат, графическое решение систем линейных алгебраических уравнений. Реальная многомерная произвольно-угольная система координат. Закономерности решения "полнокровных" систем.

Подобные документы

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Означення і властивості подвійного та потрійного інтеграла. Перехід до полярних координат. Обчислення об’єму циліндричного тіла. Перехід до циліндричних координат потрійного інтеграла. Застосування подвійних і потрійних інтегралів до задач механіки.

    курсовая работа, добавлен 23.04.2011

  • Особенность вычисления двойного интеграла в декартовой и полярной системе координат. Ограничение области интегрирования сверху и снизу гладкими поверхностями и проектирование на плоскость. Определение объема тела, ограниченного параболическим цилиндром.

    презентация, добавлен 27.09.2017

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Характеристика особенностей линий второго порядка - плоских линий прямоугольных координат, точки которых удовлетворяют алгебраическое уравнение второй степени. Изучение формул преобразования координат при параллельном переносе и повороте на угол.

    презентация, добавлен 17.11.2015

  • Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.

    контрольная работа, добавлен 05.06.2014

  • Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.

    лабораторная работа, добавлен 16.05.2015

  • Формула ускорения точки в декартовой системе координат. Материальная точка как простейшая механическая система, обладающая минимально возможным числом степеней свободы при данной размерности пространства, исследование ее свойств в математической сфере.

    реферат, добавлен 23.09.2013

  • Задача стабилизации для нелинейной неуправляемой по первому приближению системы. Построение стабилизирующего управления на основе метода функции Ляпунова, описание области притяжения. Метод замены фазовых координат. Система со степенью нелинейности.

    статья, добавлен 30.10.2016

  • Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.

    курс лекций, добавлен 02.06.2015

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.

    контрольная работа, добавлен 11.12.2012

  • Определение и анализ положения главных центральных осей инерции составного сечения. Вычисление и характеристика главных центральных моментов инерции сечения. Изучение координат центров тяжести профилей и координат центра тяжести сечения на чертеже.

    практическая работа, добавлен 20.03.2024

  • Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.

    курсовая работа, добавлен 26.07.2012

  • Основні поняття векторної алгебри, геометрична модель векторної величини. Лінійні операції з векторами, лінійна залежність та лінійна незалежність системи векторів. Визначення проекції вектора на ось. Прямокутна декартова система координат в просторі.

    лекция, добавлен 11.02.2011

  • Терминология и свойства тройных интегралов, вычисление с помощью массы неоднородного тела, а также декартовых, цилиндрических и сферических координат. Применение тройных интегралов для расчета координат центра тяжести, инерции и кинетической энергии тела.

    реферат, добавлен 10.11.2010

  • Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.

    реферат, добавлен 02.10.2013

  • Загальне рівняння площини: якщо в просторі задано довільну площину і фіксовану прямокутну декартову систему координат, то площина визначається в цій системі координат рівнянням першого ступеня. Колінеарні вектори. Рівняння площини у відрізках на осях.

    реферат, добавлен 05.12.2012

  • Перетворення координат з використанням конформних відображень відповідних областей на круг, одержання множини розв’язків рівняння Гельмгольца у системах координат. Побудування розв’язки задач для рівняння у площині з еліптичним отвором та півплощині.

    статья, добавлен 27.07.2016

  • Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.

    курс лекций, добавлен 19.09.2015

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Вычисление тройного интеграла в цилиндрической системе координат. Основные определения тройного интеграла. Теорема и свойства, замена переменных при ее доказательстве. Тройной интеграл в цилиндрической системе координат. Изменение порядка интегрирования.

    курсовая работа, добавлен 13.01.2015

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.

    курсовая работа, добавлен 18.10.2015

  • Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.

    лабораторная работа, добавлен 08.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.