Основи теорії ймовірностей
Випробовування як наявність певного комплексу умов або дій, при яких спостерігається відповідне явище, подія як його можливий результат. Відносна частота та її стабільність. Аксіоматична побудова теорії ймовірності, аналогії між подіями та множинами.
Подобные документы
Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
презентация, добавлен 21.03.2014Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
контрольная работа, добавлен 07.12.2011Функції від одного випадкового аргументу. Композиція законів розподілу. Математичні моделі в теорії ймовірності. Ступінь точності випробування. Розрахунок ймовірності складніших подій. Виникнення теорії ймовірностей як науки, встановлення аксіоматики.
курсовая работа, добавлен 13.06.2016Класичне визначення ймовірності, умовна ймовірність. Зв'язок теорії ймовірностей з теорією множин. Теореми про додавання та множення ймовірностей довільних, несумісних та незалежних подій. Сутність теорем та формул Лапласа, Байєса, Бернуллі, Пуассона.
реферат, добавлен 16.12.2010Виведення формули Бернуллі. Найбільш імовірне число появи подій при повторних випробуваннях. Випадкові дискретні та неперервні величини, їх характеристики і закони розподілу ймовірностей. Функція щільності розподілу та парадокс теорії ймовірностей.
презентация, добавлен 21.03.2014Історія виникнення теорії ймовірностей у середині XVII ст. у зв'язку з завданнями розрахунку шансів виграшу гравців в азартних іграх. Міркування французького математика Паскаля. Розрахунок рівноможливих випадків. Теорія ймовірностей - розділ математики.
реферат, добавлен 26.11.2016Особливості розбудови матриці відношення. Основні принципи оперування елементами теорії множин. Алгоритм проведення операцій над множинами, основні властивості відношень і реалізація операцій над множинами засобами програмування за допомогою мови C++.
лабораторная работа, добавлен 28.10.2012Опис досліджень з теорії чисел, алгебри, теорії ймовірностей та варіаційного числення Михайла Васильовича Остроградського. Огляд наукових робіт В.Й. Левицького, А.В. Скорохода, Ю.Л. Далецького. Є.Є. Слуцький - основоположник теорії випадкових функцій.
презентация, добавлен 12.11.2013Аналіз зв’язку класичної теорії ймовірностей, теорії нечітких множин і можливості застосування цієї теорії в економічних цілях. Визначення поняття усередненої міри, ризику та міри ризику на підставі теорії нечітких множин. Властивості функції належності.
статья, добавлен 30.01.2017Розробка методів встановлення умов стійкості і керованості диференціальних та різницевих систем рівнянь, коефіцієнти яких є випадкові функції від часу, а випадковий розв’язок зазнає стрибків. Межа математичних дисциплін та теорії ймовірностей в роботі.
автореферат, добавлен 26.09.2015Класичне і статистичне означення ймовірності. Теореми Лапласа, формула Пуассона. Відхилення відносної частоти від сталої імовірності в незалежних випробуваннях. Найімовірніше число появ події. Числові характеристики дискретних випадкових величин.
учебное пособие, добавлен 14.07.2017Поняття теорії множин, отримання нових множин. Доведення справедливості співвідношень між множинами з використанням дій над множинами, законів алгебри множин, діаграм Ейлера-Венна. Пошук прообразу вказаного елемента. Бінарні відношення на множинах.
контрольная работа, добавлен 19.08.2017Особливості встановлення належності певного предмету до об'єму поняття. Відношення належності між множинами та їхніми елементами. Визначення суті універсальної та порожньої множин. Формулювання закону оберненого відношення між змістом та обсягом поняття.
лекция, добавлен 19.08.2017Закони розподілу ймовірностей випадкових величин. Теорема Чебишова та центральна гранична теорема Ляпунова. Нормальний закон розподілу випадкових величин: нормована функція Лапласа або інтеграл ймовірностей, розподіл Стьюдента, асиметрія та ексцес.
презентация, добавлен 21.03.2014Розробка схеми розв’язання та побудова точних розв’язків задач теорії потенціалу для просторових тіл з кутовими точками. Особливості використання інтегральних розвинень по функціях Лежандра типу Мелера-Фока в просторових задачах теорії пружності.
автореферат, добавлен 12.02.2014Походження комплексних чисел. Їх дійсна і уявна частина. Гіперболічні функції та їх зв’язок із тригонометричними функціями. Основні властивості комбінацій. Класичне означення імовірності. Теорема додавання ймовірностей сумісних і несумісних подій.
курс лекций, добавлен 25.01.2014Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).
лекция, добавлен 08.08.2014- 18. Ланцюгові дроби
Роль ланцюгових дробів в теорії чисел, теорії ймовірності, в обчислювальній математиці. Скінченні ланцюгові, підхідні дроби. Квадратичні ірраціональності і періодичні ланцюгові дроби. Представлення дійсних чисел ланцюговими дробами. Загадка Григорія ХІІІ.
курсовая работа, добавлен 27.02.2019 Визначення інтерпретації закону двоїстості де Моргана для довільної множини теорії ймовірності. Формула знаходження найймовірнішого числа подій. Специфіка використання інтегральної теореми Лапласа та розподілу Пуассона у рішеннях математичних задач.
практическая работа, добавлен 30.04.2015Обчислення ймовірності події. Знаходження функції розподілу і побудова графіку при заданій дискретній випадковій величині. Обчислення математичного сподівання, дисперсії та середньоквадратичного відхилення при заданій інтегральній функцій розподілу.
контрольная работа, добавлен 17.10.2009Аналітичний метод для дослідження обернених задач розсіяння, що виникають у теорії розповсюдження електромагнітних хвиль. Побудова теорії інтегрування початково-крайових задач. Методи аналітичної факторизації, заснованих на задачі Рімана-Гільберта.
автореферат, добавлен 14.09.2015Випадкові події та означення ймовірності. Основні формули додавання і множення ймовірностей. Незалежні повторні випробування, формула Бернуллі. Дискретні випадкові величини та їх числові характеристики. Статистична перевірка статистичних гіпотез.
методичка, добавлен 02.12.2015Елементи комбінаторики. Основні види з’єднань: розміщення, перестановки і сполучення. Випадкові події, імовірність подій: класичне визначення імовірності. Теореми додавання та множення ймовірностей. Формула повної імовірності. Формули Байєса та Бернуллі.
лекция, добавлен 26.01.2014Вивчення теорії ймовірностей, імовірнісних процесів і математичної статистики. Огляд функції, щільності розподілу випадкової величини та їх властивостей на підставі центральної граничної теореми. Аналіз розподілу Вейбулла і його практичного застосування.
контрольная работа, добавлен 28.02.2011Аналіз асимптотичної динаміки недисипативних систем на некомпактних функціональних просторах. Основи якісної теорії нелінійних різницевих рівнянь з неперервним часом. Просторово-часовий хаос в розподілених системах з регулярною динамікою на атракторі.
автореферат, добавлен 29.09.2015