Начальные геометрические сведения

История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.

Подобные документы

  • Геометрическое понятие "сферический треугольник" и его свойства. Неевклидова и евклидова геометрии. Аксиома параллельности прямых. Некоторые факты из геометрии Лобачевского. Основные понятия сферической геометрии. Равнобедренный сферический треугольник.

    творческая работа, добавлен 03.05.2019

  • Геометрические построения, историческая справка. Построения с помощью циркуля и линейки. Общие аксиомы конструктивной геометрии. Геометрические построения одной линейкой. Аксиомы математических инструментов. Окружность и ее центр (построение Штейнера).

    курсовая работа, добавлен 10.12.2011

  • Первые достижения древних людей в арифметике и геометрии. Цели, принципы, структура и содержание математического образования. Развитие научно-технического прогресса, примеры практического использования математических знаний в инженерной деятельности.

    реферат, добавлен 03.10.2012

  • Точки, прямые, отрезки. Луч и угол, градусная мера угла, разновидности углов. Смежные и вертикальные углы. Медианы, биссектрисы и высоты треугольника. Признаки равенства треугольников. Решение задач на построение. Признаки и аксиома параллельности прямых.

    презентация, добавлен 13.04.2012

  • Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.

    курсовая работа, добавлен 25.10.2015

  • Основные закономерности и содержание геометрии Лобачевского, понятие псевдосферы, модели Клейна и Пуанкаре. Анализ поверхности постоянной отрицательной кривизны. Аксиоматика евклидовой геометрии: связь прямой и точки, отрезка непрерывности и плоскости.

    реферат, добавлен 21.10.2014

  • Характеристика особенностей формирования начертательной геометрии как науки. Анализ основных событий жизни и творчества основателя начертательной геометрии Гаспара Можа. Анализ программы лекций для студентов по начертательной геометрии Гаспара Монжа.

    реферат, добавлен 21.02.2017

  • История открытия фрактальной геометрии, определение ее сущности и особенностей. Значение, использование фрактальной геометрии в различных сферах и профессиях человеческой деятельности. Описание вклада Бенуа Мандельброта в изучение фрактальной геометрии.

    статья, добавлен 12.02.2019

  • Краткие биографические данные о жизни Фридриха Гаусса. История составления таблицы обратных величин. Первый успех математика, построение правильного 17-угольника циркулем и линейкой. Развитие высшей алгебры, теории чисел, дифференциальной геометрии.

    реферат, добавлен 17.12.2013

  • Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.

    курсовая работа, добавлен 23.04.2011

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.

    презентация, добавлен 29.04.2015

  • Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.

    методичка, добавлен 10.04.2012

  • Определение термина "тригонометрия". Развитие тригонометрии как раздела астрономии. Возникновение понятия "тангенс". Вклад арабских ученых в развитие науки. Таблица синусов, тангенсов и котангенсов ученого аль-Маразви. Развитие тригонометрии в Индии.

    презентация, добавлен 12.03.2017

  • Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.

    реферат, добавлен 01.10.2014

  • Классификация методов обучения, применяемых на занятиях геометрии. Основные средства и приемы формирования практических умений и навыков при обучении геометрии на 2 курсе колледжа. Динамика развития экспериментальной работы и оценка результатов.

    курсовая работа, добавлен 13.06.2015

  • Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.

    учебное пособие, добавлен 14.03.2014

  • Аксиоматический метод построения научной теории. Основные понятия. "Начала" Евклида. Модель планиметрии Лобачевского на евклидовой плоскости. Геометрия Лобачевского. Исторические сведения о развитии тригонометрии. Тригонометрические соотношения.

    реферат, добавлен 14.07.2008

  • Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.

    презентация, добавлен 28.11.2014

  • В статье рассмотрены особенности использования программы 1С: Математический конструктор на уроках геометрии. Авторы описывают возможности программы, которые позволяют учащимся легко и интерактивно создавать геометрические фигуры, проводить исследования.

    статья, добавлен 21.10.2024

  • Периоды развития математики в Китае. Развитие математики в Китае в рамках условной периодизации, предложенной Ли Янем. Древнее математическое "Десятикнижье": сочинение Лю Хуэя по практической геометрии, метрологический трактат Сунь-цзы, математика Китая.

    реферат, добавлен 05.11.2017

  • Возникновение элементарной математики, первые системы исчисления древних государств и основоположники математических школ. Создание аналитической геометрии, дифференциальное и интегральное исчисление. Основные этапы становления современной математики.

    реферат, добавлен 08.12.2013

  • Этапы развития математических знаний: формирование понятия геометрической фигуры и числа, изобретение арифметических операций, появление дедуктивной математической системы. Древнейшие древнеегипетские математические тексты. Нумерация и разложение чисел.

    реферат, добавлен 19.12.2010

  • Изучение биографии Николая Ивановича Лобачевского - выдающегося российского математика. Геометрические исследования ученого по теории параллельных линий. Создание учебников по элементарной математике и алгебре. Основные аксиомы геометрии Лобачевского.

    презентация, добавлен 24.02.2014

  • Николай Лобачевский, один из гениальных математиков, краткая биография ученого. Области применения геометрии Лобачевского в науке. Лобачевский - автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.

    реферат, добавлен 07.06.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.