Графы. Основные понятия и определения

Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

Подобные документы

  • История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.

    курсовая работа, добавлен 14.01.2011

  • Мультиграф, в котором не допускаются петли, но пары вершин могут соединяться более чем одним ребром. Теоретико-множественное представление графов. Вид двоичного дерева поиска, в котором ключами являются латинские символы, упорядоченные по алфавиту.

    курсовая работа, добавлен 15.01.2014

  • Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.

    презентация, добавлен 26.07.2015

  • Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.

    дипломная работа, добавлен 04.12.2019

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.

    контрольная работа, добавлен 13.05.2014

  • Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.

    контрольная работа, добавлен 01.04.2016

  • Изучение истории математики как учебного предмета. Формирование умений по построению логических доказательств и математических моделей как общие направления обучению математике в школе. Особенности теоретической и прикладной математики в школьном курсе.

    статья, добавлен 05.07.2013

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Изучение процедуры построения предфрактального графа. Рассмотрение этапов процесса выполнения операции замещения вершины затравкой. Особенности процесса порождения предфрактального графа. Понятие мультиграфа и рассмотрение способов обозначения его ребер.

    статья, добавлен 19.01.2018

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.

    контрольная работа, добавлен 21.09.2017

  • Изучение теории возвратных последовательностей и возможное применение её части на факультативах в школьном курсе математики. Примеры возвратных задач. Вывод формул вычисления любого члена возвратной последовательности. Базис возвратного уравнения.

    контрольная работа, добавлен 23.09.2009

  • Прикладная математика как объединение всех математических методов и дисциплин, находящих практическое применение за пределами чистой математики. Применение математики в других областях науки и техники (в физике, химии, астрономии, экономике, инженерии).

    статья, добавлен 30.03.2019

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.

    курсовая работа, добавлен 28.05.2019

  • Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.

    дипломная работа, добавлен 26.02.2020

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • Алгоритм выделения эйлерова цикла в связном мультиграфе с четными степенями вершин. Гамильтоновы циклы и цепи. Остовное дерево с минимальной суммой длин содержащихся в нем ребер. Висячая вершина с инцидентным ей ребром. Изучение свойств деревьев.

    лекция, добавлен 18.10.2013

  • Значение и методы интеграции математики в естествознании. Специфика применения математики в химии, биологии, физике, астрономии, географии и экологии. Понятие точности и математических знаков, роль арифметического счета и геометрических измерений.

    реферат, добавлен 11.04.2015

  • Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.

    шпаргалка, добавлен 08.09.2013

  • Проектирование информационных систем на основе графовых моделей. Анализ связей между элементами и множествами модели ИС в аспекте применения инвариантов теории графов. Использование соответствия Галуа при анализе системных связей информационных моделей.

    статья, добавлен 24.07.2018

  • Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.

    реферат, добавлен 27.03.2011

  • Интегральные представления и асимптотика числа помеченных связных разреженных графов. Некоторые необходимые условия хроматичности многочлена. Метод сжатия-разжатия для перечисления графов. Упрощение некоторых формул для числа карт на поверхностях.

    автореферат, добавлен 17.12.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.