Комбинаторные задачи

Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.

Подобные документы

  • Основы теории вероятностей, комбинаторики и статистики. Правила суммы и произведения. Непересекающиеся конечные множества. Арифметический треугольник паскаля и бином ньютона. Интервальная таблица частот. Методика преподавания элементов стохастики.

    учебное пособие, добавлен 30.04.2014

  • Доказательство возможности построения круга, равновеликого по площади квадрату с точностью на восемь знаков общепринятого числа "пи". Выражение длины окружности прямым отрезком. Решение математической задачи "кругатура квадрата" геометрическим способом.

    статья, добавлен 03.03.2018

  • Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.

    методичка, добавлен 07.06.2012

  • Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

    учебное пособие, добавлен 18.01.2015

  • Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.

    учебное пособие, добавлен 13.01.2014

  • История возникновения математики. Концептуализация числа и изобретение основных действий: сложения, вычитания, умножения и деления. Создание счётных устройств. Развитие высокотехнологичной, образованной и обеспеченной цивилизации благодаря математике.

    реферат, добавлен 09.02.2016

  • Изучение периодов зарождения и становления математики. Проблема счета – первая ключевая проблема античной математики. Анализ проблемы измерения, стимулировавшей развитие математики на стадии ее зарождения. "Математика. Утрата определенности" по М. Клайну.

    реферат, добавлен 06.12.2009

  • Понятие комбинаторики, история развития науки: древний период, средневековье, новое время. Современное развитие комбинаторики. Анализ элементов комбинаторики: размещение с повторением, без повторения, перестановки и сочетания. Примеры из комбинаторики.

    реферат, добавлен 06.04.2016

  • Характеристика основных комбинаций многогранников с цилиндром, конусом и шаром. Главные правила при решении задач на комбинации фигур. Особенности факторов связанных с вписанными и описанными сферами. Формулы для расчета площади поверхности и объема.

    реферат, добавлен 21.05.2013

  • Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.

    контрольная работа, добавлен 21.05.2014

  • Теоретические основы этноориентированного обучения математики в общеобразовательной школе. Выявление необходимости реализации этноориентированного обучения на уроках математики. Задачи с этнорегиональным содержанием при изучении темы "Целые числа".

    контрольная работа, добавлен 12.06.2021

  • Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.

    лекция, добавлен 29.09.2013

  • Основные этапы развития математики. Особенности математики в различных странах. Значимость математики в нынешнее время. Возникновение арифметики и геометрии. Формирование понятия геометрической фигуры и числа. Крупное количество счета.

    презентация, добавлен 09.11.2016

  • История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.

    статья, добавлен 11.10.2024

  • Анализ деятельности древнегреческих математиков. Изучение великих задач: построения квадрата, равновеликого данному кругу; деления произвольно заданного угла на три равновеликие части; построения куба, объем которого вдвое больше объема заданного куба.

    реферат, добавлен 24.11.2022

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Абсолютное значение числа. Формулы сокращенного умножения. Решение квадратного уравнения. Упрощение многоэтажных дробей. Действия со степенями. Действия с логарифмами. Преобразования для нахождения производных, решения дифференциальных уравнений.

    шпаргалка, добавлен 21.08.2013

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

  • Изучение школьниками задач на смеси, сплавы и проценты. Характеристика трудностей при решении сюжетно-текстовых заданий. Сравнение учебников математики 5-6 классов на наличие сюжетных задач. Проведение исследования концентраций и процентного содержания.

    статья, добавлен 22.04.2019

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Понятие множества, его виды и характеристическое свойство. Математическое доказательство как цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Теоретико-множественный смысл натурального числа, нуля и операций на множестве.

    шпаргалка, добавлен 18.06.2011

  • Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.

    методичка, добавлен 28.03.2017

  • Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.

    реферат, добавлен 26.03.2019

  • Исследование упрощенных приемов вычислений. Рассмотрение интересных и простых способов умножения. Правила использования пальцев рук. Применение индийского принципа. Применение метода замков и венецианских ставен. Анализ крестьянского и табличного расчета.

    реферат, добавлен 21.05.2016

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.