Комбинаторные задачи
Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.
Подобные документы
Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.
реферат, добавлен 16.01.2018Понятие, содержание и структура системы проблемно-поисковых задач, ориентированной на формирование исследовательских умений учащихся на уроках математики. Особенности построения системы проблемно-поисковых задач и эффективность ее использования.
курсовая работа, добавлен 24.04.2014Рассуждения как сущность логического метода решения текстовых задач. Характеристика их способа решения. Примеры текстовых задач, решаемых логическим способом. Возникновение логического способа решения. Суть логического способа решения текстовых задач.
статья, добавлен 22.04.2019Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
курс лекций, добавлен 06.08.2017Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.
курсовая работа, добавлен 22.02.2019Решение задач с нелинейными ограничениями-неравенствами. Рассмотрение задачи нахождения направления. Точка Джона для исходной задачи, когда оптимальное значение целевой функции задачи поиска равно нулю. Оптимальное решение задачи одномерной минимизации.
задача, добавлен 06.09.2017Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.
контрольная работа, добавлен 21.09.2017Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
курсовая работа, добавлен 22.04.2011Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.
реферат, добавлен 06.07.2009Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015- 111. Числовые множества
Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011 Изучение одного из возможных подходов к системному обобщению математического понятия множества, а именно подхода, основанного на системной теории информации. Использование теории как основы для обобщения и создания "математической теории систем".
статья, добавлен 26.04.2017Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.
презентация, добавлен 10.11.2015- 115. Хроматические числа
Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.
книга, добавлен 25.11.2013 Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.
контрольная работа, добавлен 15.01.2018Язык математики и его основные элементы. Функции и операции над ними. Интегральное исчисление и его приложения. Множества, мера и их применения. Математические модели и гуманитарные науки. Проблемы и перспективы современной прикладной математики.
курс лекций, добавлен 14.08.2015Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017- 119. Случайные события
Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015 Определение синуса, косинуса, тангенса и котангенса действительного числа. Основные свойства и графики тригонометрических функций. Формирование графической симметрии относительно начала координат. Характеристика множества значений переменной величины.
лекция, добавлен 12.10.2015Общая характеристика вариантов построения модели преподавания математики как открытой сложной развивающейся системы. Знакомство с особенностями системно-структурного подхода к преподаванию математики в вузе. Анализ идеей прагматизма в математике.
статья, добавлен 26.04.2019Формування в учнів початкової школи розуміння цілого та його частин. Розв'язування задач, пов'язаних зі знаходженням частини числа та числа за відомою його частиною. Дроби та їх зображення. Знаходження дробу від числа та числа за величиною його дробу.
презентация, добавлен 10.11.2019- 123. Методы решения задач
Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012 Изучение принципов и методов решения комбинаторных задач. Операции с конечными множествами, состоящими из элементов любой природы и их подмножества. Соединения перестановки, замещения, сочетания. Факториал и его свойства. Комбинаторный закон умножения.
методичка, добавлен 22.09.2013Аксиомы стереометрии, их сущность и содержание. Построение сечения тетраэдра и сечения через точки. Основные понятия и теоремы стереометрии. Построение сечения тетраэдра плоскостью, проходящей через возможные точки. Примеры задач для контрольной работы.
презентация, добавлен 13.04.2012