Булева алгебра регулярных замкнутых множеств

Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

Подобные документы

  • Доказательство условий, при выполнении которых семейство регулярных функций множества, заданных на алгебре подмножеств топологического пространства и принимающих значения в произвольном топологическом пространстве, являются равномерно исчерпывающими.

    статья, добавлен 31.05.2013

  • Понятие и общая математическая характеристика множества, его главные свойства и отличительные признаки. Способы задания числовых значений. Описание основных операций, проводимых над множествами: объединение и пересечение. Диаграмма Эйлера-Венна.

    контрольная работа, добавлен 04.12.2013

  • Математика в Древнем Вавилоне. Число во времена Пифагора и ранних пифагорейцев. Геометрическая алгебра в современности. Формулы сокращённого умножения. Квадрат суммы, разность квадратов. Геометрическое объяснение дистрибутивного закона умножения.

    реферат, добавлен 26.12.2011

  • Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.

    лабораторная работа, добавлен 09.08.2010

  • Описание свойства транзитивности принадлежности для самопринадлежащих множеств. Доказательство теоремы о непротиворечивости теории множеств с самопринадлежностью. Алгебра скобок единого и многого. Отношение части и целого. Приложение к доказательству.

    статья, добавлен 26.04.2019

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Алгебра Лейбница как векторное пространство с билинейным произведением, в котором выполняется известное тождество. Пример нинельпотентного многообразия алгебр Лейбница с условием энгелевости порядка р. Его использование для поля нулевой характеристики.

    статья, добавлен 31.05.2013

  • Основные понятия векторной алгебры. Аналитическая геометрия в пространстве. Введение в математический анализ. Дифференциальное исчисление, неопределенные и определенные интегралы. Функции нескольких переменных. Ряды и дифференциальные уравнения.

    учебное пособие, добавлен 09.12.2016

  • Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.

    лекция, добавлен 12.07.2015

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Использование новой математической структуры, которая является обобщением алгебры множеств и совмещает в себе некоторые свойства частично упорядоченных систем и логических исчислений. Особенность моделирования концепции естественных рассуждений.

    статья, добавлен 16.01.2018

  • Переменные и функции алгебры логики, обзор ее основных теорем о положений. Реализация импульсно-потенциальных логических элементов Троичные коды и система счисления. Логические элементы дискретной автоматики. Принцип двойственности (правило де Моргана).

    лекция, добавлен 22.10.2013

  • Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.

    презентация, добавлен 22.09.2017

  • Получение обобщенных уравнений электродинамики и гидроаэродинамики, устанавливающих иерархию и взаимосвязь основных величин, изменяющихся в пространстве и времени, с помощью четырехвекторов и алгебры Клиффорда. Бивектор гравитационно-инерциального поля.

    статья, добавлен 27.05.2018

  • Векторная алгебра и кривые второго порядка. Аналитическая геометрия в пространстве. Определенный интеграл и его геометрические приложения. Обобщение понятия определенного интеграла. Функции нескольких переменных. Двойные и несобственные интегралы.

    учебное пособие, добавлен 03.10.2012

  • Рассмотрение становления геометрической алгебры в Древней Греции, ее применения при решении уравнений, доказательстве алгебраических тождеств, при построении фигур. Влияние геометрической алгебры на разрешение математических проблем в арабских странах.

    статья, добавлен 26.04.2019

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.

    методичка, добавлен 05.05.2014

  • Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.

    методичка, добавлен 08.09.2015

  • Строение абелевых групп симметрий хиггсовского потенциала в вакууме для N-дублетной хиггсовской модели. Типы центральных простых конечномерных некоммутативных йордановых супералгебр. Конструкция кольца частных для обобщенной алгебры Новикова-Пуассона.

    научная работа, добавлен 28.10.2018

  • Основні поняття теорії множин. Відношення та їх властивості. Відображення та функції. Булеві функції та алгебра логіки. Двоїстість булевих функцій. Функціональна повнота наборів булевих функцій. Алгебра Жегалкіна, методи мінімізації булевих функцій.

    реферат, добавлен 22.08.2011

  • Множество Rn и расстояние в нем. Метрическое пространство как множество Х вместе с фиксированной в нём метрикой. Открытые и замкнутые множества. Общая характеристика и основные свойства сферы как множества точек. Некоторые примеры топологической сферы.

    реферат, добавлен 16.09.2011

  • Деление и история алгебры, происхождение ее термина. Древнейшие сочетания по алгебре, появление от арабов и ее развитие в Европе в эпоху Возрождения. Решение уравнений третей и четвёртой степени. Некоторые математические знаки и даты их возникновения.

    реферат, добавлен 27.09.2014

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Биография создателя линейной алгебры Г. Крамера. Основные понятия матрицы и действия над ними. Описание системы линейных уравнений и её решение. Вектор как геометрическая абстракция для объектов, характеризующихся одновременно величиной и направлением.

    доклад, добавлен 20.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.