Линейное уравнение

Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.

Подобные документы

  • Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.

    курс лекций, добавлен 06.12.2015

  • Основные понятия в теории решения дробно-рациональных уравнений. Понятия "параметр" и "уравнение с параметром". Применение аналитического, графического метода и метода замены решения задач к решению дробно-рациональных уравнений, содержащих параметр.

    курсовая работа, добавлен 29.05.2018

  • Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.

    реферат, добавлен 02.06.2021

  • Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.

    учебное пособие, добавлен 13.04.2019

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.

    курсовая работа, добавлен 01.04.2022

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.

    статья, добавлен 29.04.2021

  • Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.

    презентация, добавлен 30.10.2013

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.

    научная работа, добавлен 22.07.2014

  • Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.

    контрольная работа, добавлен 04.12.2011

  • Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.

    курсовая работа, добавлен 29.11.2015

  • Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.

    реферат, добавлен 12.09.2012

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Рассмотрение вариантов решения однородных уравнений со степенью n>2. Описание алгоритма решения с наложением ограничения на величину коэффициента при втором члене выделяемого многочлена. Анализ возможности нахождения дробных значений корней уравнений.

    лекция, добавлен 01.02.2017

  • Общая характеристика основных функций уравнения. Знакомство с графическим методом решения трансцендентных уравнений, анализ особенностей. График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов.

    статья, добавлен 17.02.2019

  • Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.

    курсовая работа, добавлен 27.03.2011

  • Попытки нахождения формулы простых чисел для решения задач, представленных в Википедии. Изучение алгоритма решения Диофантовых уравнений (АРДУ). Возможность получения системы из трёх параметрических уравнений из базового уравнения с тремя неизвестными.

    статья, добавлен 30.03.2017

  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа, добавлен 04.03.2017

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.

    реферат, добавлен 06.03.2010

  • Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.

    контрольная работа, добавлен 23.06.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.