Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
Подобные документы
Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.
презентация, добавлен 15.10.2016Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013- 78. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.
лекция, добавлен 18.10.2013- 80. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
методичка, добавлен 29.09.2017 - 81. Теория графов
Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.
контрольная работа, добавлен 08.02.2015 Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.
реферат, добавлен 13.01.2012Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011Алгоритм и основные этапы построения треугольной сети для заданной посредством контрольных точек поверхности NURBS. Сравнительная характеристика и анализ преимуществ использования двух распространенных методов подразбиений – Loop и Modified Butterfly.
статья, добавлен 21.06.2018Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.
учебное пособие, добавлен 08.02.2015Понятие и эйлерова характеристика многогранников. Число рёбер, граней, вершин платоновых тел: тетраэдра, куба, октоэдра, додекаэдра, икосаэдра. Многогранники в искусстве, архитектуре, биологии. Характеристика звёздчатых и полуправильных многогранников.
презентация, добавлен 29.04.2013История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.
презентация, добавлен 15.10.2016Основные черты распределения Релея. Особенности закона распределения случайной величины. Понятие и принципы построения гистограммы частот. Характеристика и порядок расчета среднего квадратического отклонения. Алгоритм генерации случайных величин.
курсовая работа, добавлен 30.10.2013Сущность и формальное определение алгоритма на графах, изобретенного нидерландским ученым Э. Дейкстрой. Принципы использования массивов чисел в простейшей реализации для хранения чисел. Анализ сложности алгоритма и доказательство его корректности.
реферат, добавлен 07.05.2011Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
методичка, добавлен 28.06.2013Разработка и анализ алгоритма, его структура и основные этапы реализации. Анализ входных и выходных данных, используемые процедуры. Программа на языке Turbo Pascal, ее листинг, формирование руководства пользователя и оценка результатов тестирования.
курсовая работа, добавлен 27.11.2014Изучение нового метода кодирования смежными классами по подгруппе произвольной группы, пригодного как для засекречивания информации, так и для ее передачи. Правила кодирования для линейных кодов. Кодирование с нефиксированной длиной кодового слова.
статья, добавлен 27.02.2019Классификация плоских и объемных фракталов, их размерность и основные принципы построения. Алгоритм визуализации в геометрические формы при помощи программы "3D моделирование". Модуль генерации точек пространства, принадлежащего трехмерному фракталу.
статья, добавлен 30.07.2017Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.
учебное пособие, добавлен 15.10.2016Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016Решение задачи оптимального размещения компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Анализ свойств минимальных путей в нагруженном орграфе. Построение матрицы инцидентности для орграфа.
курсовая работа, добавлен 10.01.2016Классификация моделей релаксации клики. Алгоритмы нахождения плотных подграфов. Применение теории графов для описания фондового рынка. Реализация алгоритмов и их сравнение. Модифицированный Degree Decomposition Algorithm. GRASP алгоритм поиска квази-клик.
дипломная работа, добавлен 02.09.2018- 98. Теории множеств
Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.
лекция, добавлен 29.09.2013 Сравнение трех методов организации перебора вариантов при выборе информативного подмножества признаков в задаче распознавания образов. Принципы и условия использования алгоритма FRiS-Stolp. Критерии информативности и пригодности выбираемой подсистемы.
статья, добавлен 28.10.2018Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.
статья, добавлен 13.01.2014