Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
Подобные документы
Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.
контрольная работа, добавлен 14.06.2015- 102. Алгоритм Дейкстра
Елементи теорії графів. Цикломатичне число і фундаментальні цикли. Незалежні безлічі і покриття. Задача знаходження мінімального шляху в графах: алгоритм Дейкстра. Графічне зображення початкового графа і дерева мінімальних шляхів після виконання програми.
курсовая работа, добавлен 21.11.2017 История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.
презентация, добавлен 28.02.2012Нахождение вершин и углов параллелограмма. Составление уравнения перпендикуляра в треугольнике. Определение угла между плоскостью и прямой, проходящей через начало координат и заданную точку. Уравнение перпендикуляра, опущенного из точки на прямую.
контрольная работа, добавлен 08.10.2013Первые упоминания о многогранниках как открытии человечества. Звездчатые формы и соединения тел Платона. Пересечения продолжения граней Платоновых тел. Связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере.
реферат, добавлен 21.01.2014Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
контрольная работа, добавлен 29.01.2014Универсальный метод построения (черчения) трехмерных проекций гиперкубов любых n-мерных измерений (3ПГК-n) в любых проекциях и ракурсах. Геометрические особенности трехмерной проекции четырехмерного гиперкуба (3ПГК-4). Характеристика вершин 3ПГК-4.
методичка, добавлен 25.06.2017Понятие поверхности второго порядка как геометрического места точек, декартовы прямоугольные координаты которых удовлетворяют заданному уравнению. Классификация поверхностей второго порядка. Примеры записей уравнения однополостного гиперболоида.
курсовая работа, добавлен 15.11.2013Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.
презентация, добавлен 09.04.2014Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Освоение графического метода решения задач линейного программирования. Оптимальный недельный план производства, при котором прибыль будет максимальной. График оптимизационной задачи. Координаты вершин многоугольника допустимых решений и значения функции.
лабораторная работа, добавлен 11.06.2011Различные формы задания булевых функций. Переход от одной формы задания к другой. Построение и упрощение формул, задаваемых различными схемами. Нахождение кратчайших маршрутов для взвешенных графов с помощью алгоритма Форда–Беллмана и алгоритма Дейкстры.
курсовая работа, добавлен 18.10.2017Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.
учебное пособие, добавлен 28.12.2013- 115. Алгоритм двухпараметрической аппроксимации нормального частотного распределения нечетким интервалом
Описание численно-аналитического алгоритма решения задачи определения реперных точек нормированного симметричного нечеткого интервала, аппроксимирующего нормальное частотное распределение с произвольными параметрами математического ожидания и дисперсии.
статья, добавлен 22.01.2017 Точний алгоритм поліноміальної складності для спеціального підкласу графів, а для другої наближений алгоритм для довільних ациклічних графів. Виділення підкласів графів, для яких існують точні алгоритми поліноміальної складності розв'язання задачі.
статья, добавлен 02.10.2024- 117. Графы и автоматы
Неориентированные и ориентированные графы, основные понятия и теории. Задача о максимальном потоке в сети. Приложения теоремы о потоках. Теория автоматов, операции над языками. Критерий распознаваемости и нераспознаваемости языка конечным автоматом.
учебное пособие, добавлен 25.12.2011 Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
контрольная работа, добавлен 28.12.2014Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.
контрольная работа, добавлен 21.05.2013- 120. Решение уравнений
Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.
контрольная работа, добавлен 07.03.2016 - 121. Обыкновенные дроби
Понятие обыкновенной дроби, ее разновидности и особенности. Описание операций, выполняемых над обыкновенными дробями, отличия правильных дробей от неправильных, правила чтения. Сущность числителя и знаменателя, этапы сравнения обыкновенных дробей.
конспект урока, добавлен 09.12.2012 Обозначение вершин и сторон треугольника. Виды треугольников (остроугольный, прямоугольный и тупоугольный), признаки их равенства. Сумма углов треугольника. Замечательные линии и точки в треугольнике. Соотношение сторон в произвольном треугольнике.
презентация, добавлен 06.05.2014Порядок и принципы построения алгоритма, основанного на взаимодействиях параллельно работающих компонентов. Представление параллельных алгоритмов, реализованное в виде дуальных графов или матрично-предикатном виде. Преимущества подобного представления.
статья, добавлен 30.07.2017Означення квадратичної функції. Порядок знаходження координат вершин параболи та нулів функції. Визначення напряму віток та виконання побудови графіка квадратичної функції. Її властивості, проміжки зростання та спадання, найбільше та найменше значення.
презентация, добавлен 12.05.2016Спрощення практичної реалізації структурного аналізу схеми алгоритму. Інструменти методології дослідження, матриця суміжності графа алгоритму з виявленням структурних елементів та співвідношень між ними. Дослідження вимог технології роботи об'єкта.
статья, добавлен 12.08.2022