Нелокальные задачи для уравнения смешанного параболо-гиперболического типа
Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
Подобные документы
Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Исследование для параболического уравнения второго порядка (специального вида) краевой задачи, когда каждое равенство граничного условия однородно относительно параметра при замене производных. Последовательность решения некорректных краевых задач.
статья, добавлен 02.02.2019Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.
курс лекций, добавлен 26.08.2015- 31. О задаче с операторами М. Сайго на характеристиках для вырождающегося гиперболического уравнения
Исследование нелокальной задачи для вырождающегося уравнения гиперболического типа в характеристической области, условия которой содержат обобщенные операторы дробного интегродифференцирования на характеристиках. Доказательство однозначной разрешимости.
статья, добавлен 31.05.2013 Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Уравнения Навье-Стокса как система дифференциальных уравнений в частных производных, описывающих движение вязкой ньютоновской жидкости, знакомство с основными особенностями. Общая характеристика способов решения прикладных задач газовой динамики.
контрольная работа, добавлен 25.07.2013- 34. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.
статья, добавлен 27.05.2018Изучение поведения решений дифференциального уравнения. Вычисление асимптотики собственных значений дифференциального оператора. Выведение асимптотика решений соответствующего дифференциального уравнения при больших значениях спектрального параметра.
статья, добавлен 21.06.2018Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
статья, добавлен 29.04.2017Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.
курсовая работа, добавлен 06.05.2015- 39. Существование и устойчивость решений краевых задач эллиптического типа с разрывными нелинейностями
Основной аппарат и реализация вариационного подхода для нелинейных эллиптических задач. Получение теорем существования для резонансных краевых задач, установка условий корректности и правильности решений, доказательство устойчивости множеств решений.
автореферат, добавлен 10.12.2013 Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Задачи Коши, нахождение решения дифференциального уравнения. Способы получения формулы Эйлера и способы повышения ее точности. Структурная схема системы управления. Построение решения дифференциального уравнения с использованием неявного метода Эйлера.
реферат, добавлен 16.06.2009Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.
курс лекций, добавлен 29.11.2020- 43. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.
статья, добавлен 31.07.2018Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012Описание результатов решения начальных и краевых задач с учетом неустранимой погрешности. Характеристика круга решаемых задач и преимуществ предложенных методов. Анализ значения учета погрешностей для решения задач повышения надежности устройств.
статья, добавлен 24.07.2018Анализ локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения, рассматриваемого в простой области. Изучение корректности "в целом" ряда обратных задач для неустановившегося математического равенства.
статья, добавлен 12.05.2018Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.
статья, добавлен 21.06.2018