Нелокальные задачи для уравнения смешанного параболо-гиперболического типа

Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.

Подобные документы

  • Диофант и история диофантовых уравнений. Сравнения первой степени с одним неизвестным и методы их решения. Методы решения линейных сравнений. Нахождение решений для некоторых частных случаев линейного диофантового уравнения, основные понятия и свойства.

    дипломная работа, добавлен 27.10.2013

  • Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.

    презентация, добавлен 30.10.2013

  • Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.

    презентация, добавлен 26.10.2013

  • Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.

    учебное пособие, добавлен 19.11.2015

  • Методика выполнения построчного ортонормирования матричного уравнения краевых условий на левом участке. Характеристика специфических особенностей осуществления замены метода численного интегрирования Рунге-Кутта в алгоритме прогонки С.К. Годунова.

    статья, добавлен 26.06.2016

  • Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).

    курсовая работа, добавлен 05.06.2015

  • Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.

    контрольная работа, добавлен 04.12.2014

  • Возможности системы MathCAD для решения математических и физических задач. Основные математические функции системы MathCAD. Вычисление силы давления воды на пластину. Вычисление частного решения дифференциального уравнения и значения полученной функции.

    курсовая работа, добавлен 15.02.2014

  • Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

    книга, добавлен 19.05.2011

  • Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.

    реферат, добавлен 18.05.2016

  • Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.

    контрольная работа, добавлен 17.07.2016

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.

    контрольная работа, добавлен 04.12.2014

  • Характеристика интеграла и производной Римана-Лиувилля дробного порядка, интегрального уравнения Фредгольма, функции Гаусса. Исследование задачи с операторами дробного дифференцирования Сайго в краевом условии на характеристической части границы области.

    статья, добавлен 31.05.2013

  • Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.

    статья, добавлен 30.09.2012

  • Доказательство теоремы существования периодических по времени решений квазилинейного волнового уравнения с непостоянными коэффициентами и однородными граничными условиями, одно из которых является условием Неймана. Основные свойства волнового оператора.

    статья, добавлен 27.05.2018

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Задача для классического линейного гиперболического уравнения в прямоугольной характеристической области, ее решение с помощью редукции к системе уравнений Фредгольма второго рода, разрешимость которой устанавливается на основе метода априорных оценок.

    статья, добавлен 31.05.2013

  • Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.

    статья, добавлен 26.04.2019

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

  • Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.

    учебное пособие, добавлен 02.05.2013

  • Рассмотрение обратной краевой задачи для эволюционного уравнения четвёртого порядка, возникающего в гидроакустике стратифицированной жидкости. Решение обратной задачи при граничных условиях. Теорема существования и единственности классического решения.

    статья, добавлен 27.09.2012

  • Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.

    монография, добавлен 10.08.2017

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.