Методы оптимизации

Задачи одномерной безусловной минимизации. Численные методы поиска многомерного безусловного экстремума. Свойство унимодальной функции. Метод поразрядного поиска, перебора, деления отрезка пополам, золотого сечения, средней точки, Ньютона и хорд.

Подобные документы

  • Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.

    реферат, добавлен 14.12.2010

  • Характеристика вычислительных трудностей, связанных с барьерными функциями. Этапы алгоритма методы барьерных функций, теорема Лемма и отсутствие ограничений-равенств. Процесс преобразования задачи с ограничениями в задачу безусловной оптимизации.

    лекция, добавлен 06.09.2017

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Рассмотрение общей структуры методов поиска глобального оптимума. Характеристика классификации основных методов глобальной оптимизации по методологическому критерию. Особенность выбора и обоснования метода глобального поиска для прикладной задачи.

    статья, добавлен 07.08.2020

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Комбинированный метод как метод уточнения корней нелинейных алгебраических или трансцендентных уравнений. Нахождение интервала с существующим единственным корнем. Сохранение знаков на исследуемом отрезке. Сокращение интервалов путём половинного деления.

    отчет по практике, добавлен 14.10.2015

  • Теория и учет погрешности приближенных вычислений. Абсолютная и относительная погрешности. Численные методы решения алгебраических, дифференциальных, трансцендентных уравнений. Система линейных и графических уравнений. Метод конечных разностей и итераций.

    учебное пособие, добавлен 04.02.2015

  • Аналитический и графический способ изолирования корня, нахождение диапазона, методы по уточнению корней различных нелинейных и трансцендентных уравнений. Комбинированный метод хорд и касательных, модифицированный метод Ньютона. Уравнение третьей степени.

    лабораторная работа, добавлен 08.11.2014

  • Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.

    контрольная работа, добавлен 17.05.2019

  • Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.

    статья, добавлен 22.05.2017

  • Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.

    презентация, добавлен 30.10.2013

  • Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.

    дипломная работа, добавлен 06.03.2016

  • Рассмотрение решений систем линейных алгебраических уравнений. Описание численных методов нелинейных уравнений, интерполяция и приближение функции. Краевые задачи, примеры расчетов и способов решения. Изучение метода обратной интерации, его характеристика

    курс лекций, добавлен 26.04.2014

  • Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.

    контрольная работа, добавлен 16.05.2014

  • Общая характеристика теоремы Больцеана-Коши. Знакомство с особенностями метода равномерного поиска и метода бисекции. Анализ основных проблем поиска интервалов, содержащих корень, с заданной степенью точности. Рассмотрение способов локализации отрезков.

    лабораторная работа, добавлен 02.10.2013

  • Метод гиперплоскостей для построения выпуклой области. Решение нелинейных уравнений на основе минимизации функций многих переменных. Сокращение интервала неопределенности методами золотого сечения, квадратичной аппроксимации и Давидона-Флетчера-Пауэлла.

    реферат, добавлен 14.02.2011

  • Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.

    доклад, добавлен 09.10.2012

  • Золотое сечение как метод пропорционального деления отрезка на неравные части. Последовательность Фибоначчи — числовой ряд, в котором следующий член представляет собой сумму двух предыдущих. Роль фибоначчиевских коэффициентов в техническом анализе.

    статья, добавлен 20.10.2016

  • Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.

    учебное пособие, добавлен 22.05.2014

  • Задача линейного программирования. Определение максимума и минимума значения функции. Система линейных ограничений. Этапы решения задачи графическим методом. Универсальный метод решения систем линейных уравнений. Алгоритм двойственного симплекс-метода.

    контрольная работа, добавлен 30.04.2013

  • Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.

    курсовая работа, добавлен 15.03.2013

  • Понятия логической функции и методов минимизации, их преимущества и недостатки, отличия и сходства с другими методами. Сущность метода эквивалентных преобразований и неопределенных коэффициентов. Алгоритм метода Квайна (шаги). Метод диаграмм Вейча.

    курсовая работа, добавлен 23.11.2011

  • Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.

    учебное пособие, добавлен 02.05.2013

  • Функции чисел, понятие золотого сечения. Числа Фибоначчи, "Золотой" прямоугольник. Золотое сечение в живописи, особенности применения принципа золотого сечения в современный мире. Золотое сечение и тело человека. Рассмотрение работ Рафаэля, Дюрера.

    контрольная работа, добавлен 11.09.2020

  • Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.

    курсовая работа, добавлен 29.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.