Моделирование территориальных процессов в российских городах методом географически взвешенной регрессии

Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.

Подобные документы

  • Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.

    контрольная работа, добавлен 23.05.2021

  • Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.

    презентация, добавлен 15.12.2014

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.

    практическая работа, добавлен 31.10.2014

  • F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.

    презентация, добавлен 23.08.2016

  • Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.

    лабораторная работа, добавлен 01.11.2023

  • Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.

    презентация, добавлен 20.01.2015

  • Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.

    контрольная работа, добавлен 09.01.2017

  • Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.

    доклад, добавлен 19.11.2012

  • Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.

    курсовая работа, добавлен 12.12.2014

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.

    лекция, добавлен 15.06.2014

  • Изучение сущности математического моделирования. Отличительные черты пассивного и активного эксперимента. Нахождение математической модели процесса напыления резисторов методом полного факторного эксперимента. Оценки коэффициентов уравнения регрессии.

    контрольная работа, добавлен 30.11.2011

  • Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.

    контрольная работа, добавлен 09.06.2015

  • Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.

    лекция, добавлен 25.04.2015

  • Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.

    статья, добавлен 27.12.2020

  • Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.

    контрольная работа, добавлен 18.12.2014

  • Оценка коэффициентов парного уравнения регрессии. Анализ графиков, отражающих зависимости между результативным показателем и факторными признаками. Изображение эллипсов рассеяния. Обзор особенностей заполнения матрицы парных коэффициентов корреляции.

    лабораторная работа, добавлен 11.11.2017

  • Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.

    курсовая работа, добавлен 30.05.2018

  • Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.

    контрольная работа, добавлен 12.01.2015

  • Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.

    лабораторная работа, добавлен 06.10.2016

  • Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.

    краткое изложение, добавлен 22.05.2010

  • Вычисление коэффициентов регрессии и выявление тенденции развития процессов. Обработка табличных данных. Отчет кредитной организации о прибыли, убытка. Корреляционный анализ. Парная и множественная регрессии. Решение математических задач средствами Excel.

    контрольная работа, добавлен 05.06.2022

  • Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.

    контрольная работа, добавлен 20.06.2012

  • Рассмотрение статистического описания и выборочных характеристик двумерного случайного вектора. Построение диаграммы рассеяния, нанесение на нее уравнения регрессии. Определение качества аппроксимации результатов наблюдений выборочной регрессии.

    курсовая работа, добавлен 13.10.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.