Искусственные нейронные сети в прогнозировании и анализе временных рядов
Сфера применения искусственных нейронных сетей (ИНС). Использование ИНС в прогнозировании временных рядов. Возможности применения ИНС для моделирования демографической динамики. Прогнозирование динамики численности населения, смертности и рождаемости.
Подобные документы
- 51. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 - 52. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.
статья, добавлен 29.06.2017Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019- 55. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Задача аппроксимации ряда динамики, построение функции по конечному набору точек. Особенности минимаксной функции. Фрагмент программы создания и адаптации линейной сети. Результат аппроксимации данных. Традиционные методы сглаживания ряда динамики.
статья, добавлен 17.07.2013Анализ временных рядов на базе нечёткого представления сценариев типового развития. Модель представления динамики временного ряда в виде последовательности волн с нечеткой амплитудой. Способ идентификации прецедента, прогнозирование его поведения.
статья, добавлен 27.02.2019Проведение исследования ритейла и задачи прогнозирования. Теоретические основы временных рядов и прогностических моделей. Основы баз данных и хранилищ. Практическая реализация проектирования продаж торговой сети. Сущность и свойства моделирующего узла.
дипломная работа, добавлен 15.09.2018Разработка гибридного метода краткосрочного прогнозирования временных рядов, имеющих пропущенные значения, на основе модели клонального отбора. Порядок использования метода вывода по прецедентам разнородных антител и простейших моделей прогнозирования.
статья, добавлен 23.02.2016Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Рассматривается подход к формированию ассоциативных темпоральных правил в базах знаний временных рядов, основанный на использовании нового класса темпоральных сетевых моделей (ТМПС). Рассматривается логико-алгебраический алгоритм к обучению ТМПС.
статья, добавлен 19.01.2018Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.
курсовая работа, добавлен 16.12.2016Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.
учебное пособие, добавлен 18.01.2014Применение нейронных сетей в банковской сфере с использованием Keras и Python. Улучшение процессов принятия решений в классификации и прогнозировании рисков. Методы, используемые для обучения и тестирования моделей, результатов их анализа и интерпретации.
статья, добавлен 15.10.2024Исследование возможностей анализа исходных данных временных рядов и прогнозирования изменений переменных величин в Excel. Характеристика методов, предлагаемых электронными таблицами и их практическое применение. Расчет возможных ошибок прогноза.
лабораторная работа, добавлен 11.06.2013Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Искусственные нейронные сети как устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Варианты наиболее распространенных архитектур искусственных НС. Обучение искусственного интеллекта, основанного на НС.
лекция, добавлен 09.10.2013Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.
статья, добавлен 31.08.2018Особенности применения искусственных нейронных сетей для решения задачи классификации уровня формирования. Анализ решения задачи автоматической классификации уровня формирования по данным об идентифицированных объектах на электронной карте местности.
статья, добавлен 02.04.2019Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Прогнозирование временных рядов, отражающих количественные данные о заказах, сделанных клиентами системы массового обслуживания. Оценка распределения трудовой нагрузки персонала. Модель авторегрессии – скользящего среднего AR(I)MA. Программная реализация.
дипломная работа, добавлен 21.09.2019Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024