Искусственные нейронные сети в прогнозировании и анализе временных рядов
Сфера применения искусственных нейронных сетей (ИНС). Использование ИНС в прогнозировании временных рядов. Возможности применения ИНС для моделирования демографической динамики. Прогнозирование динамики численности населения, смертности и рождаемости.
Подобные документы
Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.
курс лекций, добавлен 08.02.2013Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Знакомство со средой создания нейронных сетей. Сущность статической и динамической архитектуры. Основные сети каскадной корреляции. Искусственные нейронные сети и алгоритмы классификации. Разработка проектов создания комплекса лабораторных работ.
дипломная работа, добавлен 04.07.2018Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.
учебное пособие, добавлен 26.08.2015Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Электрокардиография – простой неинвазивный метод регистрации и исследования электрических полей, образующихся при работе сердца. Сердечнососудистые заболевания - одна из причин смертности людей. Автоэнкодеры - нейронные сети прямого распространения.
диссертация, добавлен 17.07.2020Важность применения моделей, основанных на применении нейросетевых технологий как инструмента прогнозирования курсовой стоимости ценных бумаг. Потенциальные области применения искусственных нейронных сетей. Некоторые типовые задачи, решаемые с их помощью.
статья, добавлен 01.09.2018- 84. Нейронные сети
История искусственных нейронных сетей. Модель формального нейрона Питтса и персептрон Розенблатта. Синапс как элементарная структура и функциональный узел между двумя нейронами. Примеры наиболее часто используемых преобразовательных функций Хопфилда.
презентация, добавлен 25.06.2013 Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017История развития науки о искусственном интеллекте. Области применения исскуственного интеллекта. Некоторые сведения о мозге. Основные теории нейроподобных и нейтронных сетей. Нейроподобный элемент и нейроподобные сети. Классификация нейронных сетей.
реферат, добавлен 01.10.2009Рассмотрение задачи оценивания хаотических временных рядов в условиях действия возмущений. Возможности использования корректирующей обратной связи по наблюдаемому процессу. Использование разложения по системе ортогональных хаотических процессов.
статья, добавлен 31.08.2018Анализ проблемы сложности существующих прикладных пакетов анализа и прогнозирование для неподготовленных пользователей. Описание разработанного для решения данной проблемы прикладного пакета. Набор функциональных возможностей для решения задач на ЭВМ.
статья, добавлен 01.02.2019Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.
учебное пособие, добавлен 09.09.2012Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Анализ процесса выбора оптимальной архитектуры нейронной сети, которая способна наиболее эффективно определять тональность сообщений на интернет-форумах. Рассмотрение применения искусственных нейронных сетей для решения социально значимых проблем.
статья, добавлен 14.04.2022Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.
статья, добавлен 17.11.2018Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017Проблемы и возможности прогноза курса валют. Анализ финансовых временных рядов. Разработка искусственного интеллекта в виде нейронной сети для предсказания курса валют с гибкой настройкой. Архитектура, структура и компоненты программного приложения.
дипломная работа, добавлен 07.08.2018Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Определение сущности фьючерсного контракта. Рассмотрение сравнительного анализа модели искусственной нейронной сети и регрессионных моделей. Ознакомление с процессом выбора программного обеспечения. Исследование временных рядов биржевых индексов.
дипломная работа, добавлен 30.08.2016