Градиентные методы
Методы линейной аппроксимации, наискорейшего спуска. Первые производные целевой функции. Вычисление производных по аналитической формуле и конечно-разностной аппроксимации. Метод сопряженного градиента Флетчера-Ривса. Классификация Ньютоновских методов.
Подобные документы
Результаты сравнительного анализа погрешностей аппроксимации функции распределения непрерывной случайной величины с ограниченной областью, вычисляемого методом Розенблатта-Парзена. Целесообразность использования в данной задаче метода мнимых источников.
статья, добавлен 12.05.2017Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.
контрольная работа, добавлен 18.12.2012Определение первой и второй производных с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга и Бесселя. Вычисление интеграла по формулам левых и правых прямоугольников. Расчет интеграла по формуле с тремя десятичными знаками и формуле Симпсона.
лабораторная работа, добавлен 12.06.2015Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.
контрольная работа, добавлен 15.06.2013Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
статья, добавлен 27.11.2018- 32. Численные методы
Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.
методичка, добавлен 15.11.2014 Кинематические и динамические обратные задачи сейсморазведки. Вероятность схождения градиентных методов к глобальному экстремуму. Применение аппроксимации в методе дифференциальной эволюции. Использование параллельных вычислений в методах оптимизации.
дипломная работа, добавлен 31.01.2019Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Построение уравнения парной регрессии с помощью программы Excel по данным, описывающим зависимость уровня рентабельности на предприятии от скорости товарооборота. Вычисление коэффициента эластичности и расчет ошибки аппроксимации линейной модели.
контрольная работа, добавлен 19.10.2016Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Уравнение различного вида как основа математических моделей многих процессов и явлений в физике, химии, биологии, экономике и других областях. Вычисление приближенных значений функции при любом значении аргумента. Необходимость аппроксимации функции.
контрольная работа, добавлен 11.02.2018Приведение методов решения задач нелинейного программирования, основанного на движении из одной допустимой точки к другой точке с лучшим значением целевой функции. Рассмотрение случая линейных ограничений. Построение возможных направлений спуска.
лекция, добавлен 06.09.2017Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
контрольная работа, добавлен 16.12.2013Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.
лекция, добавлен 22.07.2015Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.
курсовая работа, добавлен 23.04.2011Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.
курс лекций, добавлен 03.07.2013Абсолютная и относительная погрешности, понятия значащих цифр приближенного числа. Оценка остаточного члена интерполяционного многочлена Лагранжа. Сущность разностной аппроксимации задачи Коши, описание правила Рунге практической оценки погрешности.
учебное пособие, добавлен 25.01.2019Нахождение частных производных, градиента и эластичности функции, исследование ее на экстремум. Вычисление зависимости величины банковской ставки от срока вклада, интервала сходимости степенных рядов. Решение дифференциальных уравнений и задачи Коши.
контрольная работа, добавлен 07.03.2015Понятие полного и частного приращения функции. Особенности определения частной производной функции нескольких переменных по одной из этих переменных. Сущность частных производных второго порядка. Математическое представление смешанных производных.
презентация, добавлен 17.09.2013Разложение функции по формуле Маклорена и в ряд Тейлора. Степенной порядок малости. Рост бесконечно большой в окрестности точки разрыва. Разложение по формуле Маклорена в окрестности бесконечно удаленной точки. Асимптоты графика функции на бесконечности.
презентация, добавлен 28.09.2017Ввод простейших команд в Maxima. Решение задач элементарной математики и линейной алгебры. Программирование в Maxima на встроенном макроязыке. Построение графиков функций. Вычисление пределов и производных функции. Функции для работы с матрицами.
курсовая работа, добавлен 14.05.2014Характеристика частных производных по переменным в определенной точке. Сущность дифференциалов высших порядков, их классификация и задача. Основные экстремумы функции двух переменных. Главные правила нахождения наибольших и наименьших значений функции.
лекция, добавлен 29.09.2013Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015