Разработка системы классификации тендеров с использованием искусственной нейронной сети
Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.
Подобные документы
Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Современные методы оценки, применяемые в автоматизированных обучающих системах. Архитектура нечеткой нейронной сети Кохонена, алгоритм обучения. Принцип оценки обучаемого инженера на базе нечеткой нейронной сети Кохонена. Реализация разработанного метода.
статья, добавлен 19.01.2018- 29. Обращение операторов в нелинейной теории оболочек с помощью нейронной сети и генетического алгоритма
Применение нейронной сети для идентификации функции нагрузки тонкостенной оболочки по результатам наблюдений. Обоснование возможности аппроксимации зависимости между результатами наблюдений и неизвестными функциями обратных задач с помощью нейронной сети.
статья, добавлен 27.09.2016 Анализ предметной области и информационных систем в сети Internet, исследование объекта автоматизации. Формирование и нормализация отношений базы данных. Структурное проектирование информационной системы, а также особенности ее архитектуры и интерфейса.
курсовая работа, добавлен 03.06.2015Анализ предметной области подбора персонала разрабатываемой системы, процесс формализации требований и автоматизируемые бизнес-процессы. Проектирование поведения системы, модели данных, проектирование нейросети для определения подходящих кандидатов.
дипломная работа, добавлен 01.12.2019Анализ информационно-аналитических систем. Проектирование нейронной сети для оценки стоимости квартиры. Описание функциональных и нефункциональных требований. Проектирование пользовательского интерфейса. Реализация интерфейса системы и генерация отчетов.
дипломная работа, добавлен 04.12.2019Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
статья, добавлен 25.02.2019Анализ существующих систем в области идентификации изображений, их применение. Характеристика функциональной структуры подсистемы. Анализ выбора нейронной сети, моделирование подсистемы идентификации. Разработка базы сигналов и создание нейронной сети.
курсовая работа, добавлен 02.08.2015- 35. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Обзор решений в области разработки идентификационных систем. Способы хранения данных. Методы искусственного интеллекта и алгоритмы распознавания лиц. Архитектура веб-приложения. Процесс обработки фотографии. Особенности реализации программной системы.
дипломная работа, добавлен 28.10.2019Обзор предметной области и развернутая модель информационной системы: вид с точки зрения прецедентов, проектирования, последовательности. Реализация информационной системы: инструмент создания приложений баз данных, разработка системы "Провизор".
курсовая работа, добавлен 09.03.2011Распознавание символов по скелетному изображению, использование нейронной сети. Вычисление набора признаков скелета символа, его идентификации по результатам обучения нейронной сети. Устойчивость алгоритма к искажениям символов и параметрам шрифта.
статья, добавлен 25.09.2012Задачи для определения оптимальной модели нейронной сети. Характеристика общей модели нейронной сети. Сравнение различных алгоритмов поиска оптимального пути. Эффективность пчелиного алгоритма в решении задачи исследования и патрулирования местности.
статья, добавлен 08.03.2019На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.
статья, добавлен 28.10.2018Описание и формализация предметной области "Гостиница". Формирование требований пользователя к АИС. Функциональная диаграмма IDEF0 и диаграмма потоков данных DFD. Разработка концепции и формирование требований АИС, описание альтернативных вариантов.
курсовая работа, добавлен 29.09.2012Разработка информационной системы для работы с базой данных сети магазинов. Анализ предметной области, описание предприятия, его структуры, назначение и структура базы данных. Физическое проектирование баз данных. Инструкция по использованию базы данных.
курсовая работа, добавлен 10.06.2019- 43. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Разработка математической модели потенциала конкурентоспособности кафедры на основе искусственной нейронной сети и ее адаптация к различным траекториям и уровням управления. Определение рейтинга объекта социальной системы на примере кафедры вуза.
автореферат, добавлен 13.08.2018- 45. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Обучение адаптивных нейро-нечетких сетей (ANFIS) для решения задач классификации деталей. Возможности ANFIS для решения задачи классификации втулок с помощью системы нечеткого вывода. Зависимость точности работы системы от количества обучающих выборок.
статья, добавлен 08.05.2018Описание исходных данных, ключевых сущностей и процессов, протекающих в предметной области. Действующие лица предметной области и взаимосвязи. Проектирование структуры базы данных предметной области. Проектирование экспертной системы предметной области.
курсовая работа, добавлен 11.03.2014Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
статья, добавлен 10.05.2022