Применение методов генетических алгоритмов для построения множества Парето в задачах многокритериальной оптимизации
Исследование методов, использующих оптимальность по Парето на основе генетических алгоритмов. Описание преимуществ метода SPEA (Strength Pareto Evolutionary Algorithm) и SPEA2 по отношению к другим наиболее часто применяемым методам VEGA, FFGA, NSGA.
Подобные документы
- 1. Сравнение эффективности применения классических и интеллектуальных методов решения задач оптимизации
Реализация и применение методов покоординатного спуска, генетических алгоритмов и метода PSO. Выбор функции для оценки качества работы алгоритмов, реализующих методы оптимизации. Разработка программного обеспечения. Мерный вектор псевдослучайных чисел.
курсовая работа, добавлен 13.01.2016 Метод многокритериальной оптимизации с использование кластерного генетического алгоритма. Анализ необходимости дополнительной проработки механизма сравнения хромосом, возможное усиление векторного критерия оптимальности дополнительными условиями.
статья, добавлен 27.02.2019Проектирование и применение гибридных биоинспирированных методов для решения трудных задач многокритериальной оптимизации. Общий подход к применению биоинспирированных методов для задач многокритериальной оптимизации при поиске Парето-оптимальных решений.
статья, добавлен 20.08.2020Попытки копирования естественных процессов, происходящих в мире живых организмов. Адаптивные методы поиска, используемые для решения задач функциональной оптимизации. Реализация генетических алгоритмов и их применение. Пути решения задач оптимизации.
курсовая работа, добавлен 18.06.2011Использование генетических алгоритмов как механизма для автоматического проектирования схем на реконфигурируемых платформах. Требования к проектированию генетических алгоритмов. Аппаратная реализация компактного и вероятностного генетического алгоритма.
статья, добавлен 16.01.2018- 6. Решение прямой и обратной задач. Изучение генетических алгоритмов с помощью графического интерфейса
Графический интерфейс генетических алгоритмов. Нахождение глобального минимума функции переменной. Поиск аргументов с помощью генетических алгоритмов. Решение прямой, обратной задач. Изучение генетических алгоритмов в режиме командной строки MATLAB.
курсовая работа, добавлен 29.02.2020 Реализация алгоритма сужения множества Парето на основе информации об относительной важности критериев на языке высокого уровня. Теорема о сужении множества Парето. Оценка выгодности инвестирования с ее помощью. Текст программы и результат ее выполнения.
лабораторная работа, добавлен 31.03.2023Использование метода полного перебора для выбора компьютера по одному критерию и методов ранга, Парето и анализа иерархий для реализации многокритериальной оптимизации. Структура программного обеспечения. Интерфейс пользователя. Верификация программы.
курсовая работа, добавлен 28.09.2015Развитие интегрированных, гибридных и синергетических систем в современной информатике. Особенности алгоритма поиска гармонии (HS), его преимущества по сравнению с известными алгоритмами оптимизации. Сравнение комбинированных генетических алгоритмов.
статья, добавлен 19.01.2018Основные определения и понятия теории графов. Оптимизация решения задач с применением эволюционно-генетического подхода. Повышение технологичности и простоты конструктивного оформления элементов принципиальных схем на основе генетических алгоритмов.
курсовая работа, добавлен 28.02.2018Постановка задачи оптимизации о нахождении экстремума вещественной функции в некоторой области. Изучение методов многомерной оптимизации, описание градиентных и безградиентных методов. Программная реализация одного из алгоритмов многомерной оптимизации.
курсовая работа, добавлен 26.06.2011Разработка генетической топологии поиска нейросетевых моделей, ее программная реализация в составе моделирующей системы. Апробация топологии на актуальной задаче. Изучение методов совместного использования генетических алгоритмов и нейронных сетей.
автореферат, добавлен 02.05.2018Анализ алгоритмов построения траектории движущихся объектов на основе сегментации видеоданных. Разработка методов сжатия за счет новых алгоритмов интерполяции отсчетов сигнала и исследование их эффективности. Построение модели кодека программы.
автореферат, добавлен 31.07.2018Понятие генетических алгоритмов как аналитических технологий, созданных и выверенных самой природой за миллионы лет ее существования. Особенности разработки системы, генерирующей решение с помощью генетических алгоритмов, характеристика их источника.
курсовая работа, добавлен 21.10.2013История появления генетических алгоритмов, области их применения: составление расписаний, задачи раскроя-упаковки, аппроксимации. Способы реализации идеи биологической эволюции в рамках генетических алгоритмов. Операторы отбора, кроссинговера и мутации.
лекция, добавлен 09.10.2013Применение переборных алгоритмов в рамках задачи оптимизации транспортной логистики. Задачи применения генетических алгоритмов. Особенности работы операторов скрещивания. Способы решения проблемы перекрестного скрещивания в задаче коммивояжера.
доклад, добавлен 28.04.2014Описание генетических алгоритмов построения характеристических последовательностей установки или сброса триггера. Сущность и развитие эволюционных алгоритмов построения характеристических и идентифицирующих последовательностей для схем с памятью.
статья, добавлен 28.02.2016Применение генетических алгоритмов (ГА), эффективных при решении задач оптимизации, их преимущества и недостатки. Процесс настройки и контроля параметров конкретного ГА, его влияние на эффективность решения задачи. Результаты тестирования алгоритмов.
статья, добавлен 29.04.2018Определение понятия и история создания генетических алгоритмов в решении оптимизационных задач. Анализ их конкурентоспособности при решении NP-трудных задач в сравнении с динамическим и линейным программированием. Схема работы и пример алгоритма.
контрольная работа, добавлен 09.03.2014Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Кластеризация, решение задач коммивояжера с помощью генетических алгоритмов. Разбиение участников рейда на группы методом древовидной кластеризации, выявление центра сбора участников с помощью генетических алгоритмов. Проверка качества кластеризации.
курсовая работа, добавлен 05.02.2014Решение задач оптимизации и структурного синтеза. Поиск путей повышения эффективности генетических алгоритмов. Экспериментальная оценка эффективности методов с фрагментарными кроссовером и макромутациями. Решение NP-трудных задач дискретной оптимизации.
статья, добавлен 19.01.2018Бесконтактное измерение биометрических параметров состояния здоровья человека. Рассмотрение амплитудного и фазового методов построения алгоритмов для измерения сердечного пульса. Особенности выявления мельчайших движений сердца на видеоизображении.
статья, добавлен 02.03.2018- 24. Программа нечеткого вывода, построенная с использованием генетических алгоритмов и знаний экспертов
Представление реализации системы нечеткого вывода с использованием генетических алгоритмов и экспертных знаний. Использование мнений экспертов, выраженных в виде правил. Возможность по выделению первичных данных из файла путем применения алгоритма.
дипломная работа, добавлен 27.08.2016 Анализ существующих подходов к решению задач структурного синтеза в проектировании и логистике. Разработка новых генетических методов структурного синтеза проектных решений. Параметры, управление которыми повышает эффективность генетических алгоритмов.
автореферат, добавлен 31.03.2018