Метод наименьших квадратов

Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.

Подобные документы

  • Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.

    реферат, добавлен 07.09.2015

  • Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.

    статья, добавлен 14.05.2017

  • Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.

    лабораторная работа, добавлен 09.12.2019

  • Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.

    презентация, добавлен 13.07.2015

  • Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.

    методичка, добавлен 19.09.2017

  • Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.

    статья, добавлен 31.08.2018

  • Разработка Лапласом методов математической физики при решении прикладных задач. Развитие теории ошибок и приближений методом наименьших квадратов. Уравнение Лапласа в случае пространственных переменных. Уравнение Лапласа в двумерном пространстве.

    реферат, добавлен 22.11.2015

  • Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.

    статья, добавлен 26.01.2019

  • Основные понятия и методы, используемые при обработке экспериментальных исследований. Классификация систематических погрешностей по причине возникновения. Идея метода наименьших квадратов. Случаи линейной, пропорциональной и нелинейной зависимостей.

    учебное пособие, добавлен 11.03.2014

  • Особенности применения теоремы Лангранжа к подынтегральной функции. Теорема о дифференцировании определенного интеграла по переменному верхнему пределу. Аппроксимация дифференциальной задачи на примере разностной схемы метода наименьших квадратов.

    шпаргалка, добавлен 24.10.2010

  • Характеристика стационарного эргодического случайного процесса. Особенность понятия корреляционной функции. Суть математического ожидания неизменного назначения. Анализ метода наименьших квадратов. Построение графиков для исходного и нового движений.

    курсовая работа, добавлен 16.07.2014

  • Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).

    контрольная работа, добавлен 25.04.2015

  • Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.

    шпаргалка, добавлен 22.04.2015

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.

    статья, добавлен 27.11.2018

  • Создание программы на языке Паскаль в среде объектно-ориентированного программирования Delphi, что позволяет видеть оптимальное решение и различные виды аппроксимации. Алгоритмы расчетов коэффициентов для различных функций и построения их графиков.

    статья, добавлен 20.07.2021

  • Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.

    контрольная работа, добавлен 19.05.2015

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

  • Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.

    дипломная работа, добавлен 10.02.2016

  • Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.

    курсовая работа, добавлен 22.01.2016

  • Определение интервальных статистических рядов распределения частот, составление эмпирических функций распределения, анализ числовых характеристик выборки. Изучение методики проверки статистических гипотез. Анализ метода наименьших квадратов в статистике.

    методичка, добавлен 06.05.2015

  • Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.

    статья, добавлен 26.01.2019

  • Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.

    контрольная работа, добавлен 20.05.2013

  • Открытие К.Ф. Гауссом основного закона погрешностей, с которым связан способ наименьших квадратов. Разнообразие методов обработки результатов эксперимента. Эффективное использование избыточной информации. Противоречивость системы линейных уравнений.

    доклад, добавлен 10.09.2015

  • Решение экстремальных задач в математической статистике. Методы наименьших квадратов, главных компонент. Выборочные оценки параметров зависимости нечисловых данных. Рассмотрение теорем, касающихся асимптотики решений экстремальных статистических задач.

    статья, добавлен 19.12.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.