Зміст і значення математичної символіки
Введення нуля і розвиток позиційної десяткової системи числення. Символіка Вієта і Декарта і розвиток алгебри в Греції, Індії та в Європі. Позначення похідної та інтеграла у Лейбніца і розвиток аналізу. Мова канторів і основи математичної логіки.
Подобные документы
Характеристика визначеного інтеграла: означення та властивості; умови інтегрованості функції; формула Ньютона – Лейбніца; методи обчислення площ плоских фігур, довжини дуги плоскої кривої, об’єму і площі поверхні тіл обертання. Огляд невласних інтегралів.
лекция, добавлен 30.04.2014- 52. Алгебра логіки
Основні поняття алгебри логіки та її закони. Алгоритм побудови таблиць істинності для складних виразів. Схеми базових логічних елементів. Операції заперечення, диз'юнкції і кон'юнкції для обробки висловлювань. Правила перетворення логічних виразів.
практическая работа, добавлен 13.07.2017 Сутність та візуалізація похідної у різних реалізаціях: для функції однієї, кількох змінних, вектор-функцій, дійсної, комплексних змінних. Означення похідної як границі частки приросту функції до приросту аргументу функції, способи її зображення.
статья, добавлен 27.04.2023Вивчення поняття інтегралу Рімана та умов його існування. Визначення властивостей інтеграла Рімана. Класи інтегрованих функцій. Розгляд інтегралу Стілтьєса. Суми Дарбу-Стілтьєса та їх властивості. Граничний перехід під знаком інтеграла Стілтьєса.
курсовая работа, добавлен 16.04.2014Результати експерименту ізотермічної сушки гранул. Розробка математичної моделі процесу сушіння грануляту до заданого вологовмісту, що є необхідною умовою для стабільності подальшого технологічного процесу. Встановлення оптимального режиму сушіння.
статья, добавлен 29.07.2016Формування навичок ділення багатоцифрових чисел. Розкриття властивостей нуля й одиниці при діленні. Знаходження невідомого множника за відомим іншим множником і добутком. Розвиток самостійності міркувань, логічного мислення та інтересу до математики.
конспект урока, добавлен 16.09.2018Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
учебное пособие, добавлен 19.04.2013Задачи диференціального числення. Поняття про інтегральне числення. Невизначений інтеграл, його властивості. Таблиця основних інтегралів. Основні методи інтегрування. Метод безпосереднього інтегрування, підстановки, заміни змінної, інтегрування частинами.
лекция, добавлен 08.08.2014Множина дійсних та комплексних чисел. Збіжні послідовності у просторі. Неперервність функцій дійсних змінних. Вивчення основних теорем диференціального числення, формула Тейлора. Первісна і невизначений інтеграл. Елементи аналізу у метричних просторах.
учебное пособие, добавлен 02.09.2014Побудова точного аналітичного розв'язку алгоритмічного характеру гіперболічної крайової задачі математичної фізики в обмеженому кусково-однорідному просторовому середовищі. Використання методу головних зв'язків (функцій впливу та функції Гріна).
статья, добавлен 04.02.2017Основні теоретичні відомості: походження поняття похідної; зростання та спадання функції; найбільше та найменше значення функції; означення дотичної. Правила диференціювання; застосування похідної для розв'язування рівнянь. Текстові задачі на екстремум.
контрольная работа, добавлен 29.04.2018Властивості перетворення Лапласа. Теорема подібності (зміна масштабу аргументу оригіналу). Формули зображень елементарних функцій. Знаходження зображень для заданих оригіналів. Застосування операційного числення до розв’язування диференціальних рівнянь.
лекция, добавлен 30.04.2014Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Розкриття питань застосування похідної для дослідження функцій на монотонність та екстремум, знаходження найбільшого та найменшого значення функцій. Розгляд прикладних задач на дослідження функцій, на складання рівнянь дотичної, нормалі та деяких інших.
курсовая работа, добавлен 17.02.2014- 66. Похідна
Пояснення визначення похідної та диференціювання, їх головне значення та особливості. Похідна простих функцій та вищих порядків, розрахунок її знаходження за визначенням. Геометричний зміст функції, загальне поняття неперервності та диференційованості.
реферат, добавлен 12.04.2014 Зчислені множини та їх властивості. Застосування теореми Кантора-Бернштейна. Міра Лебега обмежених множин. Поняття півкільця, кільця, алгебри. Узагальнення поняття вимірності в R1. Властивості вимірних функцій, пов’язані з алгебраїчними операціями.
курсовая работа, добавлен 09.11.2014Перевірка вміння учнів застосовувати набуті знання у нестандартних ситуаціях. Розвиток уміння працювати самостійно, активізація розумової діяльності та бажання застосовувати здобуті знання для досягнення поставленої мети; розвиток любові до математики.
автореферат, добавлен 19.09.2018- 69. Теорема Вієта
Засвоєння змісту теореми Вієта для зведеного квадратного рівняння та для квадратного рівняння загального виду. Формування вміння відтворювати вивчені твердження, використовувати їх для розв'язування завдань. Визначення коефіцієнтів квадратного рівняння.
конспект урока, добавлен 21.10.2018 Розгляд історії математики як інтеграційної основи навчання курсу алгебри майбутніх учителів математики. Використання методів геометричної алгебри при сумуванні чисел натурального ряду. Знаходження суми послідовних непарних чисел, починаючи з одиниці.
статья, добавлен 02.02.2018Загальна характеристика використання методів математичного аналізу в медико-біологічній практиці. Розгляд функції та її похідних. Застосування диференціалу для наближених розрахунків. Основи інтегрального числення. Поняття про диференціальні рівняння.
учебное пособие, добавлен 17.11.2015- 72. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри в загальноосвітній школі
Методичні вимоги до сучасного використання методів та способів розв’язування алгебраїчних задач. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри, алгебри і початків аналізу; виявлення основ досягнення і тенденції в їх розвитку.
автореферат, добавлен 29.01.2016 Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.
учебное пособие, добавлен 13.07.2017Границя послідовності та функції, принципи її визначення та головні характеристики. Властивості функцій, неперервних на відрізку, точки розриву та їх класифікація. Диференціальне числення функції однієї змінної, а також механізм визначення її похідних.
учебное пособие, добавлен 13.07.2017Задачі, які приводять до поняття похідної. Механічний, фізичний, геометричний зміст похідної. Неперервність та диференційованість. Похідні вищих порядків явно заданої функції. Похідні вищих порядків неявно заданої функції та параметрично заданої функції.
лекция, добавлен 08.08.2014