Основные теории графов. Ориентированный граф. Неориентированный граф

История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

Подобные документы

  • Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.

    контрольная работа, добавлен 08.02.2015

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Понятие графа в математической теории и информатике, виды и область применения графов. Код Харари, сущность идеи Ф. Харари, основателя теории графов. Нахождение кратчайшего пути во взвешенном графе, восстановление дерева по заданному коду Прюфера.

    контрольная работа, добавлен 24.11.2014

  • Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.

    дипломная работа, добавлен 26.02.2020

  • Определение последовательности объезда городов, которая обеспечит минимальное время переезда. Решение задачи о коммивояжере методом ветвей и границ. Неориентированный и ориентированный граф задачи коммивояжера. Теория графов и сетевого моделирования.

    контрольная работа, добавлен 29.04.2011

  • Граф в математике как картинка, где нарисовано несколько точек, некоторые из которых соединены линиями, принципы его построения, анализ. История возникновения графов и ученые, участвовавшие в разработке данной концепции. Задача о Кенигсбергских мостах.

    презентация, добавлен 18.03.2013

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.

    курсовая работа, добавлен 26.11.2014

  • Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.

    статья, добавлен 13.01.2014

  • Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.

    контрольная работа, добавлен 27.03.2012

  • Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.

    учебное пособие, добавлен 15.10.2016

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

  • Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".

    методичка, добавлен 15.10.2016

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.

    учебное пособие, добавлен 15.10.2016

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

  • Рассмотрение основных понятий теории множеств. Сущность элементарных тождеств, их функции и признаки. Главные свойства операций над отношениями: эквивалентности, толерантности, частичности порядка. Характеристика теории графов: эйлеровы, гамильтоновы.

    учебное пособие, добавлен 28.12.2013

  • Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

    контрольная работа, добавлен 18.12.2015

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.

    контрольная работа, добавлен 14.09.2010

  • Понятие цифрового автомата, история разработки, современные тенденции. Составление таблицы соответствия. Основные понятия теории графов. Минимизация абстрактного автомата Мили. Исключение недостижимых состояний. Определение классов совместимости.

    контрольная работа, добавлен 11.04.2012

  • Основные понятия и определения теории графов. Представление графов с помощью матриц. Задача о максимальном потоке. Алгоритм решения задачи о максимальном потоке. Графы со многими источниками и стоками. Автоматизация поиска максимальных потоков в сетях.

    дипломная работа, добавлен 27.02.2020

  • Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.

    реферат, добавлен 17.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.