Основные теории графов. Ориентированный граф. Неориентированный граф

История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

Подобные документы

  • Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.

    шпаргалка, добавлен 08.09.2013

  • Определения теории графов. Реализация алгоритмов обработки графов в виде машинных процедур. Определение путей в графах. Математическое моделирование графов. Реализация алгоритма Флойда-Уоршелла без вычислительной системы. Оценка сложности алгоритма.

    курсовая работа, добавлен 18.10.2024

  • Основные понятия теории графов. Теорема о максимальном потоке и минимальном разрезе. Задача о минимальных затратах на построение сети. Модельный пример решения задачи о стоимости информационной сети с заданными пропускными способностями ветвей и узлов.

    контрольная работа, добавлен 08.06.2014

  • Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.

    статья, добавлен 29.04.2017

  • Алгоритмы поиска маршрута с наименьшей стоимостью в сетях с коммутацией пакетов и объединенных сетях. Алгоритм Дейкстры, Беллмана-Форда. Расчет пути с минимальным количеством переходов. Преобразование схемы в неориентированный невзвешанный граф.

    контрольная работа, добавлен 12.06.2013

  • Элементы теории графов и комбинаторики. Использование в доказательстве теоремы Кэли. Разбиение и композиции натуральных чисел. Изучение работ венгерского математика Кенинга в 30-е годы XX столетия по математической дисциплине теории графов и элементов.

    курсовая работа, добавлен 23.12.2020

  • Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.

    лекция, добавлен 18.10.2013

  • Исследование возможных разверток куба, порядок представления каждой из них в виде графов. Способы разреза куба для получения одиннадцати известных разверток. Отличительные особенности и свойства симметричных и ассиметричных разверток, их внешний вид.

    статья, добавлен 04.05.2012

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.

    курсовая работа, добавлен 30.03.2015

  • Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.

    задача, добавлен 11.09.2012

  • Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.

    реферат, добавлен 13.11.2013

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.

    курсовая работа, добавлен 03.11.2015

  • Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.

    лекция, добавлен 18.10.2013

  • Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.

    учебное пособие, добавлен 13.01.2014

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Характеристика ориентированного графа, путь и длина пути в графе. Элементарный путь и контур. Полустепень исхода и полустепень захода вершины. Матрица смежности графа и матрица инциденций. Двухполюсная транспортная сеть и условия ее существования.

    контрольная работа, добавлен 15.12.2010

  • Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.

    курсовая работа, добавлен 28.05.2019

  • Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.

    дипломная работа, добавлен 28.08.2016

  • Применение теории графов в геоинформационных системах. Использование простейших методов решения задачи коммивояжера. Постановка оптимизационной задачи и критерий оптимальности для задачи коммивояжера. Применение в логике математических методов.

    контрольная работа, добавлен 18.02.2015

  • Математическое моделирование задач электроэнергетики с помощью аппарата линейной алгебры, теории графов. Расчёт установившихся режимов электрических систем, не содержащих и содержащих контур. Вероятностно–статистические методы в задачах электроснабжения.

    курсовая работа, добавлен 13.11.2014

  • Различные формы задания булевых функций. Переход от одной формы задания к другой. Построение и упрощение формул, задаваемых различными схемами. Нахождение кратчайших маршрутов для взвешенных графов с помощью алгоритма Форда–Беллмана и алгоритма Дейкстры.

    курсовая работа, добавлен 18.10.2017

  • Порядок и принципы построения алгоритма, основанного на взаимодействиях параллельно работающих компонентов. Представление параллельных алгоритмов, реализованное в виде дуальных графов или матрично-предикатном виде. Преимущества подобного представления.

    статья, добавлен 30.07.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.