Дискретный анализ. Комбинаторика. Перестановки
Нумерация перестановок и процесс их отображения. Теоремы о числе перестановок и об их лексикографическом переборе. Перебор наборов индексов. Задача о минимуме суммы попарных произведений. Нахождение максимальной возрастающей подпоследовательности.
Подобные документы
Нахождение функций принадлежности и представление в виде поэлементных суммы множества. Изображение графически их функций принадлежности. Нахождение аналитического выражения для функции принадлежности объединения множеств; геометрическое представление.
методичка, добавлен 19.03.2024Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
учебное пособие, добавлен 11.10.2014Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
реферат, добавлен 18.04.2015- 79. Принцип Дирихле
Краткая биография немецкого математика, специалиста в сфере комбинаторики, дискретных объектов и теории чисел - Петера Густава Лежен Дирихле. Формулировки и сфера применения законов, открытых математиком. Методика решения задач по принципу Дирихле.
презентация, добавлен 15.05.2014 Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Элементы теории графов и комбинаторики. Использование в доказательстве теоремы Кэли. Разбиение и композиции натуральных чисел. Изучение работ венгерского математика Кенинга в 30-е годы XX столетия по математической дисциплине теории графов и элементов.
курсовая работа, добавлен 23.12.2020Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013Нахождение производной или дифференциала функции как основная задача дифференциального исчисления. Свойства неопределенного интеграла. Процесс интегрирования иррациональных выражений, замена переменной интегрирования по частям в определенном интеграле.
контрольная работа, добавлен 11.05.2012Рассматривается задача, в которой матрица весовых коэффициентов дуг не является симметричной. Исследуются основные математические модели, включая модель с минимальным числом линейных ограничений. Рассматривается нахождение минимального остовного дерева.
статья, добавлен 12.05.2018Системы счисления (нумерация) – совокупность способов обозначения натуральных чисел. История появления и развития различных систем счисления. Сравнительный анализ позиционных и непозиционных систем счисления. Перевод из одной системы счисления в другую.
реферат, добавлен 27.02.2009Доказательство теоремы существования и единственности решения аналога задачи Франкля для уравнения смешанного параболо-гиперболического типа третьего порядка. Представление теоремы об однозначной разрешимости нелокальной внутренне-краевой задачи.
автореферат, добавлен 27.03.2018Анализ аппроксимации как процесса приближения функции f(x) к более простой функции. Анализ интерполяции как процесса нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Определение интерполяционного полинома.
контрольная работа, добавлен 11.02.2018Определение общего содержания и описание элементарного доказательства Великой теоремы Ферма с использованием малой теоремы Ферма и метода клонирования уравнений. Доказательство справедливости Великой теоремы Ферма для разных значений показателя степени.
задача, добавлен 18.05.2012Особенности зарождения счета в глубокой древности, основные этапы выработки понятия о числе. Участие пальцев в счете, появление первых систем счисления. Особенности письменной нумерации у древних народов. Понятие натуральных, дробных и рациональных чисел.
реферат, добавлен 06.09.2015Основы теории вероятностей, комбинаторики и статистики. Правила суммы и произведения. Непересекающиеся конечные множества. Арифметический треугольник паскаля и бином ньютона. Интервальная таблица частот. Методика преподавания элементов стохастики.
учебное пособие, добавлен 30.04.2014Интегрирование гиперболических функций. Преобразование произведений синусов и косинусов в суммы. Связь между табличными интегралами и обратными гиперболическими функциями. Расчет суммы разности двух аргументов, основное гиперболическое тождество.
лекция, добавлен 28.05.2016Пространство состояний системы. Модель дискретной управляемой системы. Задачи оптимизации многошаговых процессов в дискретных системах. Определение минимизирующей последовательности. Построение траектории управляемых процессов. Задача Больца и Лагранджа.
презентация, добавлен 21.08.2015История математики в Индии. Счётное устройство инков. Древнеегипетские математические тексты. Вавилонская расчётная техника. Цифры в Древнем Китае, их обозначение специальными иероглифами. Развитие математики в Европе. Древнерусская нумерация чисел.
реферат, добавлен 13.06.2013Обращение к известным доказательствам Теоремы Карно при решении ряда задач. Обобщение доказательств Теоремы Карно разными способами. Изменение теоремы при замене остроугольного треугольника на тупоугольный. Следствия, вытекающие из Теоремы Карно.
статья, добавлен 19.01.2021Описание одного из доказательств теоремы Пифагора. Существующая формула теоремы Пифагора как упрощённый вариант её решения, который можно использовать только для количественной оценки результата. Выведение полной формулы, качественный анализ результата.
статья, добавлен 03.03.2018Ознакомление с историей славянской кириллической нумерации, которая была создана вместе со славянской алфавитной системой. Рассмотрение правил записи чисел. Исследование и характеристика специфических особенностей кириллической системы счисления.
доклад, добавлен 18.02.2016Этапы развития математических знаний. Формирование понятия геометрической фигуры. Индийская нумерация (способ записи чисел). Достижения средневековых индийских математиков. Идеи и теории представителей пифагорейской школы. Вавилонская расчётная техника.
презентация, добавлен 30.03.2013Формулы и принципы комбинаторики, применение ее в теории вероятностей для подсчета вероятности случайных событий. Изучение закономерности массовых случайных явлений, правильное понимание статистических закономерностей, проявляющихся в природе и технике.
контрольная работа, добавлен 24.03.2018Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.
реферат, добавлен 15.11.2010- 100. Теорема Пифагора
Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.
презентация, добавлен 15.03.2011