Генетическая топология поиска нейросетевых моделей
Общая структура топологии применения генетических алгоритмов для обучения нейронных сетей. Методы и алгоритмы предварительной подготовки данных, расчета структуры нейросети и модифицированных методов обучения, проверки работы на валидационной выборке.
Подобные документы
Комплексный подход для проектирования коллективов нейросетевых технологий, включающий в себя методы формирования структуры нейронных сетей и их обучения. Суть метода автоматического определения способа, параметров формирования общего решения в коллективе.
статья, добавлен 18.01.2018Проблема выбора оптимального метода подбора персонифицированного лечения пациента. Исследование метода взвешенных исходов для анализа выживаемости на выборке пациентов с детским лимфобластным лейкозом. Применение данных для машинного обучения нейросети.
дипломная работа, добавлен 27.08.2016Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.
книга, добавлен 07.03.2014Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.
дипломная работа, добавлен 14.12.2019Построение распределенной автоматической системы управления. Оптимальная топология вычислительной сети, аппаратура для обработки данных. Методы оптимального проектирования (алгоритмы синтеза) вычислительной сети. Проектирование топологии сетей ЭВМ.
лекция, добавлен 18.03.2018Типы информационных систем в зависимости от способа организации обработки данных и взаимодействия пользователей. Определение достоинств и недостатков иерархических сетей. Физические топологии, используемые в локальных сетях. Топология типа "Звезда".
реферат, добавлен 09.04.2015Разработка информационной системы для заданной предметной области с использованием заданных структур данных и алгоритмов. Характеристика алгоритмов и структуры данных. Рассмотрение описания программы. Определение алгоритма поиска слова в тексте.
курсовая работа, добавлен 15.11.2017Перспективы развития аналитических и прогностических свойств ГИС. Интеграция нейросетевых и геоинформационных технологий, их программное обеспечение. Использование нейронных сетей в технике и биологии. Математические модели нейросетевых алгоритмов.
книга, добавлен 08.02.2013Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.
курсовая работа, добавлен 22.06.2011Задача целенаправленной предобработки обучающей выборки для ускорения обучения нейросети. Значение константы Липшица выборки, как индикатор сложности выборки. Показатели зависимости свойств обученных нейронных сетей от величины константы Липшица выборки.
статья, добавлен 08.02.2013Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Организация, принципы построения и функционирования компьютерных сетей. Общие принципы построения сетей. Сетевые топологии. Элементы теории массового обслуживания. Алгоритмы поиска кратчайшего пути. Проектирование локальных сетей, базовые протоколы.
отчет по практике, добавлен 07.04.2023Изучение алгоритмов машинного обучения, направленных на выявление закономерностей в графических данных. Применение сверточных нейронных сетей при работе со спутниковыми изображениями. Создание интерактивной карты для визуализации распознанных объектов.
дипломная работа, добавлен 02.09.2018Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.
статья, добавлен 29.04.2018Методы интеллектуального анализа данных, основанных на применении искусственных нейронных сетей, их ключевая особенность. Понятие репрезентативности исходных данных. Формирование обучающей выборки и оценка достоверности данных таблиц базы данных.
статья, добавлен 30.05.2017Общие сведения о сетях. Реализация распределенной обработки данных. Три основных класса сетей: глобальные, региональные и локальные. Достоинства и недостатки одноранговых сетей и сетей с выделенным сервером. Топологии "звезда", "кольцо", "общая шина".
курсовая работа, добавлен 30.10.2012Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Подготовка данных, входы и выходы нейросети, изменения котировок. Выбор программного обеспечения: Matlab, Statistica, BrainMaker, NeuroShell Day Trader. Подготовка данных средствами MetaTrader. Знакомство с Matlab и обучения нейросетей в пакете AnfisEdit.
реферат, добавлен 02.12.2011Раскрытие содержания понятия и определение назначения компьютерной сети. Изучение структуры и описание архитектурного принципа построения компьютерных сетей. Общая характеристика топологии локальных сетей. Изучение структуры и типов глобальных сетей.
курсовая работа, добавлен 12.09.2012- 46. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Введение в структуры и алгоритмы компьютерной обработки данных. Типы данных языков программирования высокого уровня. Массивы, строки, записи, множества. Задачи и многообразие алгоритмов линейного, блочного и бинарного поиска. Связные линейные списки.
учебное пособие, добавлен 12.05.2014Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Задача определения оптимальной структуры нейросети. Зависимости величин ошибок обучения и обобщения (процент неправильно решенных примеров в соответствующей выборке) и индикаторов внутренних свойств нейросетей от числа нейронов в скрытом слое сети.
статья, добавлен 08.02.2013Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020