Применение производной в заданиях ЕГЭ
Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.
Подобные документы
Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Приложение производной в технике: принцип ее работы. Производство, передача и потребление электроэнергии. Геометрический и физический смысл производной. Его применение при исследовании свойств функций Уравнение касательной к графику линейной функции.
реферат, добавлен 31.10.2017Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.
презентация, добавлен 02.05.2012Изучение способов решения квадратного неравенства: аналитического и графического. Исследование неравенств с одной переменной. Рассмотрение особенностей неравенств, содержащих знак модуля. Определение количества целочисленных решений неравенства.
презентация, добавлен 15.03.2015- 56. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
контрольная работа, добавлен 20.12.2013 Ключевая роль неравенств в курсе математики средней школы. Решение неравенств с использованием свойств функции. Линейные, квадратичные, иррациональные, показательные и логарифмические неравенства. Некоторые лжепреобразования при решении неравенств.
дипломная работа, добавлен 09.11.2017Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.
контрольная работа, добавлен 04.12.2011- 60. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Роль неравенств в курсе математики средней школы. Классификация утверждений об относительной величине или порядке двух не одинаковых объектов. Методы решения линейных, квадратичных, дробно-рациональных и иррациональных неравенств методом интервалов.
реферат, добавлен 26.12.2015Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.
лекция, добавлен 13.04.2015- 64. Численные методы
Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.
учебное пособие, добавлен 02.05.2013 Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018- 66. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Доказывание теоремы признаков дифференцируемости обобщенной производной Шварца, в отличие от функций, дифференцируемых по Ньютону. Исследование существований левой и правой производных. Суть формулы Лагранжа конечных приращений классического анализа.
статья, добавлен 20.05.2018Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Доказательство теоремы по эквивалентности понятий "обобщение производной Шварца и исправленной производной по С. Шарипову". Особенности определения точки излома графика функции. Сущность теории классического анализа. Общее понятие об урчуктной функции.
статья, добавлен 20.05.2018Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.
учебное пособие, добавлен 19.12.2012Модуль как расстояние от нуля до числа, которое выражено в единичных отрезках. Характеристика основных признаков простейших уравнений и неравенств. Исследование алгоритма раскрытия модуля неравенства в зависимости от знака подмодульного выражения.
статья, добавлен 22.02.2017Исследование метода доказательства вероятностных неравенств, основанный на использовании рекурсивно определяемых функций. Методика разработки и решения задачи, естественным образом возникающей в связи с вопросом об усилении неравенства Розенталя.
статья, добавлен 31.05.2013Общее представление о задачах с параметрами в материалах Единого государственного экзамена. Аналитический и графический методы их решения, применение для всех типов уравнений, неравенств. Разработка упражнений, на примерах которых реализуются эти методы.
курсовая работа, добавлен 29.05.2018Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012