Применение производной в заданиях ЕГЭ
Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.
Подобные документы
- 101. Частные производные
Понятие полного и частного приращения функции. Особенности определения частной производной функции нескольких переменных по одной из этих переменных. Сущность частных производных второго порядка. Математическое представление смешанных производных.
презентация, добавлен 17.09.2013 Определение основных видов функций, изучение их свойств. Использование аналитического и графического методов задания функций при нахождении ограничений снизу и сверху на множестве; точек максимума и минимума; вычислении наименьшего и наибольшего значений.
реферат, добавлен 05.10.2009Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.
презентация, добавлен 21.09.2013Недостаточное внимание к математической составляющей в структуре задач, представленных в олимпиадных заданиях. Анализ учебников по финансовой грамотности и учебников математики на предмет наличия в них математических задач экономического содержания.
статья, добавлен 10.09.2020Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012- 108. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.
контрольная работа, добавлен 18.02.2016Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.
методичка, добавлен 21.03.2013Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.
учебное пособие, добавлен 05.03.2010Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Рассмотрение графического метода решения систем линейных неравенств. Решение задач с использованием симплекс-метода. Рассмотрение процесса заполнения симплекс-таблицы. Характеристика сущности метода искусственного базиса и принципа двойственности.
контрольная работа, добавлен 10.10.2014Графики элементарных функций, их непрерывность. Классификация точек разрыва. Кратко о Maple. Сущность первого и второго замечательных пределов. Сравнение бесконечно малых функций. Асимптотические формулы. Правило Лопиталя. Разложение в ряд Тейлора.
учебное пособие, добавлен 11.10.2012Определение элементарных функций. Область определения и значения функции. Основные простейшие элементарные функции: линейная, степенная, квадратичная, показательная, логарифмическая, тригонометрическая, oбратная тригонометрическая. Функция и её свойства.
реферат, добавлен 30.10.2010Разработка нового способа для установления интегрируемости неограниченных разрывных функций. Теории первообразных функций. Восстановление функции по известной ее исправленной производной. Классическая теория интеграла Лебега. Дельта–функция Дирака.
статья, добавлен 20.05.2018Рассмотрение функции как одной из основных определений математики, изучение её истории. Исследование основных понятий производной. Характеристика геометрического и физического смысла производной. Определение правил логарифмического дифференцирования.
реферат, добавлен 09.03.2016Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011- 120. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
статья, добавлен 26.04.2019Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.
контрольная работа, добавлен 22.04.2018