Жизнь и научная деятельность Ж.Л. Лагранжа
Жозеф Луи Лагранж - французский математик, астроном и механик итальянского происхождения. Жизненный путь и труды. Классический трактат "Аналитическая механика". Метод вариации произвольных констант при решении линейных дифференциальных уравнений.
Подобные документы
Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.
презентация, добавлен 13.05.2012Классификация задач нелинейного программирования и методы их решения. Графический метод решения задач нелинейного программирования для функций двух переменных. Решение задач нелинейного программирования методом Лагранжа и в программной среде Mathcad.
курсовая работа, добавлен 13.10.2016Использование системы MathCAD в исследовании математической модели колебательного движения системы с демпфером. Понятие математической модели и их классификация. Числовые методы решения дифференциальных уравнений. Функции дифференциальных уравнений.
курсовая работа, добавлен 26.02.2012Архимед и его формула для объёма шара. Теорема Ферма – Эйлера о представлении простых чисел в виде суммы двух квадратов. Философ и математик Лагранж и его теорема о четырех квадратах. Математическая деятельность Гаусса – открытие о семнадцатиугольнике.
книга, добавлен 13.01.2014Аналитическая геометрия. Основные положения линейной алгебры. Использование систем линейных уравнений при решении экономических задач. Функции и теоремы математического анализа. Основные методы интегрирования. Дифференциальные и разностные уравнения.
учебное пособие, добавлен 12.03.2013Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.
курсовая работа, добавлен 23.10.2017Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.
курсовая работа, добавлен 16.12.2014Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
реферат, добавлен 09.02.2017- 87. Анри Пуанкаре
Жизнь и творчество французского математика Анри Пуанкаре, создавшего имтопологию, теорию дифференциальных уравнений, многомерный комплексный анализ, интегральные уравнения, теорию вероятностей и теорию чисел. Значимость трудов математика в современности.
реферат, добавлен 04.05.2016 Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.
контрольная работа, добавлен 16.01.2015Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Системы линейных дифференциальных уравнений. Выпуклое и нелинейное программирование. Корни характеристического многочлена. Совокупность серий для всех собственных чисел матрицы. Метод неопределенных коэффициентов. Неподвижные точки и отображения.
учебное пособие, добавлен 26.04.2014Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
учебное пособие, добавлен 25.11.2012Исследование алгоритмов решения нестационарных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах различной размерности. Изучение дифференцирования экспонентов от гиперкомплексного переменного по скалярному аргументу.
статья, добавлен 29.01.2019Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.
курсовая работа, добавлен 25.01.2017- 96. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.
контрольная работа, добавлен 06.09.2008Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.
курс лекций, добавлен 29.11.2020