Искусственные нейронные сети

Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.

Подобные документы

  • Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

    статья, добавлен 17.07.2013

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

    реферат, добавлен 08.10.2011

  • Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.

    реферат, добавлен 29.12.2011

  • Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.

    отчет по практике, добавлен 18.02.2019

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.

    реферат, добавлен 05.04.2017

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

  • Алгоритм обучения нейронной сети с помощью процедуры обратного распространения. Диаграмма сигналов в сети. Программирование нейронной сети с применением объектно-ориентированного подхода. Иерархия классов библиотеки для сетей обратного распространения.

    статья, добавлен 25.03.2013

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.

    научная работа, добавлен 26.08.2010

  • Сущность и устройство искусственных нейтронных сетей, их общая характеристика, назначение, принцип работы и составляющие базовые нелинейные элементы. Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе при помощи системы Simulink.

    контрольная работа, добавлен 12.12.2012

  • Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.

    статья, добавлен 27.07.2017

  • Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.

    учебное пособие, добавлен 15.01.2018

  • История создания искусственной нейронной сети. Перцептрон как одна из первых моделей нейросети. Архитектура когнитрона, его иерархическая многослойная организация. Классификация нейронных сетей по характеру обучения, основные сферы их применения.

    курсовая работа, добавлен 16.12.2016

  • Применение модуля программы, спроектированного на основе сверточной нейронной сети. Исследование способности нейронной сети к обучению на небольшом наборе данных в задаче классификации оружия на изображениях. Анализ результатов тестирования программы.

    статья, добавлен 17.02.2019

  • Компьютерные и телекоммуникационные сети. Общая структура телекоммуникационной сети. Различные типы сетей. Классификация услуг телекоммуникационной сети. Региональные и национальные операторы связи. Проблемы с надежностью передачи данных по сети.

    лекция, добавлен 15.02.2014

  • Искусственные нейронные сети. Весовые коэффициенты синапсов. Организация ассоциативной памяти. Полносвязная нейронная сеть с симметричной матрицей связей. Схема сети Хопфилда. Классификация по критерию максимального правдоподобия с помощью сети Хэмминга.

    реферат, добавлен 10.03.2011

  • Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.

    статья, добавлен 26.04.2019

  • Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.

    статья, добавлен 28.10.2020

  • Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.

    статья, добавлен 23.01.2014

  • Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.

    автореферат, добавлен 29.03.2018

  • Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.

    курс лекций, добавлен 08.02.2013

  • Основные понятия и определения глобальной сети. Структура территориальной компьютерной сети. Типы корпоративных сетей и недостатки телефонных сетей. Особенности магистральной территориальной сети и сети доступа. Характеристика видов интерфейсов.

    курсовая работа, добавлен 28.09.2011

  • На базе информации о векторе состояния нелинейной модели и его производной формирование статической нейронной сети, аппроксимирующей правую часть уравнений динамики. Линеаризация сети, в результате которой определение коэффициентов линейной модели судна.

    статья, добавлен 28.10.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.