Нейронные сети задач для прогнозирования курса на валютной бирже
Проект автоматизированной системы прогнозирования относительного курса валютных пар для международной валютной биржи Forex с использованием нейронных сетей. Требования к техническому обеспечению. Обоснование выбора средств автоматизации программы.
Подобные документы
Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа, добавлен 12.11.2010Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.
дипломная работа, добавлен 06.11.2011Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.
дипломная работа, добавлен 27.06.2011Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа, добавлен 03.03.2015Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа, добавлен 26.03.2016Исследование задачи и перспектив использования нейронных сетей на радиально-базисных функциях для прогнозирования основных экономических показателей: валовый внутренний продукт, национальный доход Украины и индекс потребительских цен. Оценка результатов.
курсовая работа, добавлен 14.12.2014Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.
презентация, добавлен 25.06.2013Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.
дипломная работа, добавлен 29.09.2014Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.
лабораторная работа, добавлен 20.05.2013Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа, добавлен 18.02.2017Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.
дипломная работа, добавлен 13.10.2015- 12. Нейронные сети
Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат, добавлен 16.03.2011 Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа, добавлен 06.12.2010Функциональные возможности программного продукта. Требования к программным и аппаратным средствам. Обоснование выбора наилучшей модели для прогнозирования стоимостных показателей объектов. Разработка пользовательского интерфейса и модулей программы.
дипломная работа, добавлен 24.06.2013История возникновения, примеры использования и основные виды искусственных нейронных сетей. Анализ задач, решаемых при помощи Персептрона Розенблатта, создание схемы имитационной модели в среде Delphi. Исходные коды компьютерной программы Perseptron.
дипломная работа, добавлен 18.12.2011Требования к системам дистанционного обучения. Обзор некоторых существующих решений. Выбор и обоснование решения поставленной задачи. Установка общих параметров курса и формирование схемы курса. Создание системы навигации. Разработка основного меню.
научная работа, добавлен 26.04.2009- 17. Нейронные сети
Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.
реферат, добавлен 30.09.2013 Процесс создания автоматизированной системы управления. Требования, предъявляемые к техническому обеспечению вычислительной системы. Разработка общей концепции и алгоритмов работы вычислительной системы. Выбор аппаратных средств локальных сетей.
дипломная работа, добавлен 28.08.2014Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат, добавлен 22.01.2015Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа, добавлен 08.02.2017Проектирование электронного учебного курса (ЭУК): сущность, этапы, содержание, структура. Требования к техническому исполнению ЭУК. Анализ предметной области дисциплины. Возможности программы Teach Book Lite. Результаты итогового тестирования программы.
дипломная работа, добавлен 08.09.2010Исследование эффективности применения нейронных сетей в рамках отношений между людьми. Принцип работы с нейросимулятором. Составление обучающей выборки и проектирование персептронов. Анализ выбора супружеской пары с использованием нейросетевых технологий.
презентация, добавлен 19.08.2013Решение задач прогнозирования цен на акции "Мазут" на 5 дней, построение прогноза для переменной "LOW". Работа в модуле "Neural networks", назначение вкладок и их характеристика. Построение системы "Набор программистов" нечеткого логического вывода.
курсовая работа, добавлен 26.12.2016- 24. Нейронные сети
Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.
презентация, добавлен 16.10.2013 Понятие и направления анализа акций. Изучение принципов работы нейросети с использованием программы "Нейросимулятор". Создание оптимально работающей нейросети для прогнозирования котировок акций, этапы данного процесса и оценка полученных результатов.
презентация, добавлен 19.08.2013