Искусственные нейронные сети

Изучение архитектуры искусственных нейронных сетей, способов их графического изображения в виде функциональных и структурных схем и программного представления в виде объектов специального класса network. Неокогнитрон и инвариантное распознавание образов.

Подобные документы

  • Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.

    реферат, добавлен 25.04.2016

  • Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.

    дипломная работа, добавлен 22.09.2011

  • Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.

    лабораторная работа, добавлен 05.10.2010

  • Способы применения нейронных сетей для решения различных математических и логических задач. Принципы архитектуры их построения и цели работы программных комплексов. Основные достоинства и недостатки каждой из них. Пример рекуррентной сети Элмана.

    курсовая работа, добавлен 26.02.2015

  • Рассмотрение программных продуктов, обеспечивающих решение задач по распознаванию образов. Видеопотоки от камер видеонаблюдения. Изменение размера и формата представления кадра. Отслеживание движения объекта в кадре. Распознавание номеров автотранспорта.

    лабораторная работа, добавлен 28.11.2021

  • Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.

    реферат, добавлен 24.05.2015

  • Задача анализа деловой активности, факторы, влияющие на принятие решений. Современные информационные технологии и нейронные сети: принципы их работы. Исследование применения нейронных сетей в задачах прогнозирования финансовых ситуаций и принятия решений.

    дипломная работа, добавлен 06.11.2011

  • Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.

    презентация, добавлен 16.10.2013

  • Анализ применения нейронных сетей для прогнозирования ситуации и принятия решений на фондовом рынке с помощью программного пакета моделирования нейронных сетей Trajan 3.0. Преобразование первичных данных, таблиц. Эргономическая оценка программы.

    дипломная работа, добавлен 27.06.2011

  • Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.

    реферат, добавлен 18.01.2014

  • Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.

    дипломная работа, добавлен 18.02.2017

  • Создание компьютерных сетей с помощью сетевого оборудования и специального программного обеспечения. Назначение всех видов компьютерных сетей. Эволюция сетей. Отличия локальных сетей от глобальных. Тенденция к сближению локальных и глобальных сетей.

    презентация, добавлен 04.05.2012

  • Основы нейрокомпьютерных систем. Искусственные нейронные сети, их применение в системах управления. Алгоритм обратного распространения. Нейронные сети Хопфилда, Хэмминга. Современные направления развития нейрокомпьютерных технологий в России и за рубежом.

    дипломная работа, добавлен 23.06.2012

  • Распознавание образов как раздел кибернетики, развивающий теоретические основы и методы классификации и идентификации предметов. Знакомство с принципом действия сканирующих устройств. Анализ особенностей преобразования документа в электронный вид.

    презентация, добавлен 06.01.2014

  • Основные цели и задачи построения систем распознавания. Построение математической модели системы распознавания образов на примере алгоритма идентификации объектов военной техники в автоматизированных телекоммуникационных комплексах систем управления.

    дипломная работа, добавлен 30.11.2012

  • Преимущества и недостатки нейронных сетей с радиальными базисными функциями (РБФ). Функции newrbe и newrb для построения РБФ общего вида и автоматической настройки весов и смещений. Пример построения нейронной сети с РБФ в математической среде Matlab.

    лабораторная работа, добавлен 05.10.2010

  • Типология свойств объекта, его связей и моделей представления информации. Изображение предметной области в виде логических и физических моделей. Требования к системам баз данных. Достоинства трехуровневой архитектуры. Процесс идентификации объектов.

    лекция, добавлен 19.08.2013

  • Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.

    курсовая работа, добавлен 17.06.2014

  • Анализ нейронных сетей и выбор их разновидностей. Модель многослойного персептрона с обучением по методу обратного распространения ошибки. Проектирование библиотеки классов для реализации нейросети и тестовой программы, описание тестирующей программы.

    курсовая работа, добавлен 19.06.2010

  • Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.

    дипломная работа, добавлен 21.10.2013

  • Изучение представления, основных способов расчета для целых положительных, простых чисел и ряда точек, и вычисления путем аппроксимации логарифма гамма-функции. Предоставление функциональных моделей, блок-схем и программной реализации решения задачи.

    курсовая работа, добавлен 25.01.2010

  • Изучение в реальных условиях способов представления знаний во Всемирной сети. Представления данных в интернет и способы эффективной публикации данных. Конфигурация Web-сервера на виртуальном хостинге. Настройка и отладка работы сайтов на разных CMS.

    отчет по практике, добавлен 09.02.2012

  • Проект автоматизированной системы прогнозирования относительного курса валютных пар для международной валютной биржи Forex с использованием нейронных сетей. Требования к техническому обеспечению. Обоснование выбора средств автоматизации программы.

    курсовая работа, добавлен 05.01.2013

  • Представление знаний в когнитологии, информатике и искусственном интеллекте. Связи и структуры, язык и нотация. Формальные и неформальные модели представления знаний: в виде правил, с использованием фреймов, семантических сетей и нечетких высказываний.

    контрольная работа, добавлен 18.05.2009

  • Изучение основных алгоритмов генерации различных видов фракталов. Выбор языка и среды программирования. Характеристика структурных элементов растрового графического редактора фракталов. Описание интерфейса приложения, порядок редактирования изображений.

    курсовая работа, добавлен 04.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.