Поддержка принятия решений в сфере экономики при помощи нейронной сети с алгоритмом обратного распространения ошибки

Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.

Подобные документы

  • Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.

    дипломная работа, добавлен 14.12.2019

  • Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.

    статья, добавлен 28.10.2020

  • Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.

    дипломная работа, добавлен 28.11.2019

  • Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.

    реферат, добавлен 08.10.2011

  • Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.

    статья, добавлен 23.01.2014

  • Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.

    контрольная работа, добавлен 27.11.2014

  • Анализ системы искусственного интеллекта. Описание моделей представления знаний как одного из важнейших направлений исследований в области искусственного интеллекта. Продукционная, фреймовая и логическая модели, семантические сети; экспертные системы.

    реферат, добавлен 04.05.2014

  • Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

    реферат, добавлен 20.03.2009

  • Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.

    дипломная работа, добавлен 30.08.2016

  • Понятие искусственного интеллекта. Основные модели представления знаний. Характеристика семантической сети. Интеллектуальные и экспертные системы, их классификация. Системы управления базами данных. Модели данных: иерархические, сетевые и реляционные.

    контрольная работа, добавлен 19.10.2010

  • Рассмотрение преимуществ и недостатков использования хранилищ данных. Аналитические системы поддержки принятия решений. Использование систем поддержки принятия решения для подготовки и принятия комплекса решений. Установка и настройка средств OLAP.

    реферат, добавлен 20.10.2017

  • Особенности состава и структуры информационных систем в управлении предприятием. Характеристика функциональных подсистем. Системы поддержки принятия решений (BSS). Экспертные системы (ES). Нейронные сети как исключительно мощный метод моделирования.

    реферат, добавлен 26.12.2017

  • Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.

    статья, добавлен 15.12.2021

  • Разработка алгоритма распознавания чисел с эмуляцией нейронной сети на основе использования стандартных функций табличного процессора MS Excel. Распознавание образов знаков десятичной системы, построенной с помощью горизонтальных и вертикальных штрихов.

    статья, добавлен 29.01.2020

  • Сеть встречного распространения. Первый слой Кохонена. Выход слоя Гроссберга. Обучение сети встречного распространения. Осуществление интерполяции кодов. Послойность сети и матричное умножение. Градиент квадратичной формы, начальная точка и длина шага.

    презентация, добавлен 16.10.2013

  • Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.

    статья, добавлен 26.04.2019

  • Определение сущности системы поддержки принятия решений. Ознакомление с понятием "система искусственного интеллекта". Рассмотрение особенностей использования нейронных сетей в финансах и бизнесе. Анализ преимуществ прогнозирования на нейронных сетях.

    курсовая работа, добавлен 17.10.2021

  • Описание структуры системы управления качеством услуг для комбинированной сети в условиях неполной информации о параметрах трафика в беспроводном сегменте сети. Построение диверсионной системы принятия решений на основе имитационного моделирования сети.

    статья, добавлен 04.03.2013

  • Алгоритмизация адаптивного искусственного интеллекта в мультиагентных играх. Моделирование конкурентной среды интеллектуальных агентов. Исследование эффективности алгоритмов в колониях DT, ABC и в нейронной сети, обучаемой генетическим алгоритмом.

    дипломная работа, добавлен 01.09.2016

  • Возникновение идеи нейронных сетей. Попытки ученых воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Рассмотрение научных направлений по созданию интеллектуальных систем.

    реферат, добавлен 24.03.2012

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Подходы к представлению знаний в интеллектуальных системах: продукционная модель, логическая модель, семантические сети, фреймы.

    статья, добавлен 13.03.2019

  • Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.

    контрольная работа, добавлен 31.05.2013

  • Прикладное программное обеспечение: свойства, классификация и функции. Система управления базами данных: структура, поддержка языков. История развития систем искусственного интеллекта, его отличия от обычных программ и основные темы исследований.

    курсовая работа, добавлен 14.04.2009

  • Область применения и принципы проектирования нечетких систем управления, их внутренняя структура и компоненты. Нечеткие нейронные сети и системы управления на их основе, принцип работы и сферы применения. Адаптивные системы управления с нечеткой логикой.

    контрольная работа, добавлен 10.06.2016

  • Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.

    статья, добавлен 21.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.