Поддержка принятия решений в сфере экономики при помощи нейронной сети с алгоритмом обратного распространения ошибки

Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.

Подобные документы

  • Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.

    реферат, добавлен 29.12.2011

  • Понятие искусственного интеллекта, который можно определить как научную дисциплину, которая занимается моделированием разумного поведения. Применение искусственного интеллекта в науке, быту и развлекательной сфере. Экспертные системы. Нейронные сети.

    реферат, добавлен 04.02.2015

  • Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.

    книга, добавлен 18.01.2011

  • Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.

    статья, добавлен 25.03.2019

  • Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.

    курсовая работа, добавлен 04.12.2012

  • Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.

    презентация, добавлен 16.10.2013

  • Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.

    презентация, добавлен 16.10.2013

  • Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.

    статья, добавлен 19.06.2018

  • Характеристика организации и функционирования искусственных нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Основные направления создания систем искусственного интеллекта при помощи компьютерных алгоритмов.

    реферат, добавлен 13.10.2011

  • Нейронные сети для решения задач классификации или кластеризации многомерных данных. Алгоритм работы блока функции преобразования. Рекурсивные сети. Программа Акинатор. Прохождение последовательности сигналов через сеть. Основные свойства персептрона.

    курсовая работа, добавлен 19.07.2012

  • Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.

    статья, добавлен 29.09.2012

  • Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.

    статья, добавлен 29.05.2017

  • Применение модуля программы, спроектированного на основе сверточной нейронной сети. Исследование способности нейронной сети к обучению на небольшом наборе данных в задаче классификации оружия на изображениях. Анализ результатов тестирования программы.

    статья, добавлен 17.02.2019

  • Обзор решений в области разработки идентификационных систем. Способы хранения данных. Методы искусственного интеллекта и алгоритмы распознавания лиц. Архитектура веб-приложения. Процесс обработки фотографии. Особенности реализации программной системы.

    дипломная работа, добавлен 28.10.2019

  • Фрагмент нейросети (входной и выходной слои). Простейшая линейная функция от двух входов. Трактовка работы сети для имитации прохождения по ней возбуждения, управления. Теорема о сходимости перцептрона. Метод обратного программного распространения ошибки.

    презентация, добавлен 16.11.2014

  • Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.

    курсовая работа, добавлен 21.02.2016

  • Искусственные нейронные сети как устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Варианты наиболее распространенных архитектур искусственных НС. Обучение искусственного интеллекта, основанного на НС.

    лекция, добавлен 09.10.2013

  • Базовые понятия и основные задачи искусственного интеллекта (ИИ). История развития систем ИИ. Представление входных данных. Различные подходы к построению систем ИИ. Нейронные сети Хопфилда и Хэмминга. Основные положения и применение нейронных сетей.

    курсовая работа, добавлен 05.06.2011

  • Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.

    статья, добавлен 10.05.2022

  • Расчет положения препятствий относительно транспортного средства и желаемой реакции искусственного интеллекта. Аппроксимация функций с областями значений, которые могут иметь несколько измерений - особенность нейронной сети обратного распространения.

    статья, добавлен 02.06.2021

  • Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.

    статья, добавлен 15.08.2020

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.

    статья, добавлен 27.07.2017

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.