Похідна функції, її диференціювання
Похідна як основне поняття диференціального числення, що характеризує швидкість зміни функції. Означення похідної та порядок її обчислення. Приклад знаходження похідної за визначенням. Похідні вищих порядків. Геометричний та фізичний зміст похідної.
Подобные документы
Характеристика прикладів числових множин. Особливості застосування похідної для доведення рівностей та нерівностей. Етапи побудови графіка функцій. Аналіз формул Ньютона-Лейбніца. Розгляд основних понять теорії ймовірностей та елементів комбінаторики.
книга, добавлен 16.10.2012- 52. Границя функції
Поняття про границі функції: числова послідовність, нескінченно великі змінні величини, границя функції в точці, нескінченно малі величини, їхні властивості. Основні теореми про границі. Обчислення границі функції: розкриття невизначеностей границь.
лекция, добавлен 08.08.2014 - 53. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 Апроксимація на вертикальних прямих ряду Діріхле з нульовою абсцисою абсолютної збіжності, швидкість збіжності часткових сум. Аналітичні функції з невід'ємними тейлоровими коефіцієнтами. Швидкість прямування до нулів сум тейлорового розвинення функції.
автореферат, добавлен 28.08.2014Поняття диференціального рівняння, задача, ознаки і теорема О.Л. Коші, її геометричний зміст. Ознаки та приклади загального або частинного розв’язку (інтеграли) диференціального рівняння першого порядку та з відокремленими і відокремлюваними змінними.
лекция, добавлен 01.05.2014Поняття оберненої тригонометричної функції. Поняття арксинус, арккосинус, арктангенс та арккотенгенс. Графіки і властивості функцій y = arcsin x, y = arccos x, y = arctg x та y = arcctg x. Приклади обчислення значень обернених тригонометричних функцій.
лекция, добавлен 24.01.2014Характеристика методу функції Гріна для розв’язування диференціального рівняння. Ознайомлення з процесом реалізації програми для методу функції Гріна середовищі СКМ "Mathematica". Аналіз особливостей побудови функції при постійному значенні потенціалу.
контрольная работа, добавлен 17.03.2015Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.
учебное пособие, добавлен 13.07.2017Диференціальне числення функцій однієї змінної. Інтегральне числення: комплексні числа, визначники та системи рівнянь. Елементи векторної алгебри та геометрії в просторі. Диференціальне числення функції декількох змінних та криволінійні інтеграли.
практическая работа, добавлен 23.07.2017Розгляд класу функцій, що містить в собі степеневі функції, многочлени, показникові, логарифмічні, обернені тригонометричні. Аналіз способу інтегрального означення деяких функцій та дослідження властивості цього способу, враховуючи відповідні функції.
курсовая работа, добавлен 12.12.2016Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018- 62. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Поняття числової функції. Властивості і графіки основних видів функцій. Тригонометричні функції кута і числового аргументу. Формули додавання та їх наслідки. Метод математичної індукції. Знаходження раціональних коренів многочлена з цілими коефіцієнтами.
учебное пособие, добавлен 16.07.2017Проблеми методів наближеного обчислення визначених інтегралів, що не беруться через елементарні функції і способи їх вирішення. Виведення формули наближеного обчислення, залишкового члену формули прямокутників, формули трапецій і рівняння Сімпсона.
курсовая работа, добавлен 24.12.2012Метод складання диференціального рівняння у частинних похідних, розв’язком якого має бути поверхня у просторі, що дозволить визначати відбивальні поверхні з точковими фокусами. Алгоритми розв’язання рівняння з метою визначення квазіеліпса на площині.
автореферат, добавлен 10.08.2014Розгляд методів наближеного обчислення визначених інтегралів, що не беруться через елементарні функції: формули прямокутника і трапеції, параболічне інтерполювання, формула Сімпсона. Програма на мові QBasic для автоматичного обрахування інтегралів.
реферат, добавлен 11.10.2009Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015- 68. Метод Ньютона
Знаходження кореня рівняння заданої неперервної функції на певному відрізку. Умови ітераційних обчислень у методі Ньютона. Критерії умов завершення розрахунку для алгоритму. Недоліки методу Ньютона. Обчислення квадратного кореня за його вказаного методу.
практическая работа, добавлен 09.08.2022 Поняття однорідного рівняння та функції, сутність однорідного диференціального рівняння. Задача про параболічний прожектор: мередіальний переріз поверхні обертання та заміна змінної розв’язання диференціального рівняння з відокремлюваними змінними.
лекция, добавлен 01.05.2014Властивості перетворення Лапласа. Теорема подібності (зміна масштабу аргументу оригіналу). Формули зображень елементарних функцій. Знаходження зображень для заданих оригіналів. Застосування операційного числення до розв’язування диференціальних рівнянь.
лекция, добавлен 30.04.2014Система зображення чисел у математиці. Умови використання геометричної прогресії в різноманітних системах числення. Ефективність кодування дійсних чисел та побудови відповідної метричної теорії Фібоначчі. Область застосування отриманих результатів.
автореферат, добавлен 12.07.2015Подання тригонометричних функцій через тангенс половинного кута. Обчислення похідних тригонометричних функцій. Тригонометричні тотожності. Приклади перетворень тригонометричних виразів, доведення тотожності, знайдення добутку. Вправи для розв’язування.
лекция, добавлен 24.01.2014Поняття апроксимування функції та його використання при обчисленнях на ЕОМ. Постановка задачі та інтерполяційний многочлен у формі Лагранжа. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле та модифікований алгоритм Течера-Тьюкі.
реферат, добавлен 14.02.2010Використання метода мультиплікаторів Фур’є у дослідженні деяких задач теорії наближення для класу функцій з обмеженою похідною загального вигляду. Функції множників в умовах опуклостей та нескінченності. Наближення загальних середніх степеневих рядів.
автореферат, добавлен 22.04.2014Поняття, позначення і способи завдання функції. Побудова графіків функції, система координат статичного графіка функції. Логарифмічні числа, натуральний і десятковий логарифми, логарифмічна безліч. Тригонометричні функції круга і числового елементу.
учебное пособие, добавлен 27.11.2013